K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

 Đáp án C

Gọi I là trung điểm của SC.

Khi đó I là tâm mặt cầu ngoại tiếp hình chóp

SC = \sqrt {S{A^2} + A{C^2}}  = \sqrt {{{\left( {2a} \right)}^2} + {a^2} + {{\left( {a\sqrt 3 } \right)}^2}}  = 2a\sqrt 2Bán kính R = \frac{{SC}}{2} = a\sqrt 2

 

5 tháng 11 2017

Đáp án C

25 tháng 11 2019

Đáp án C.

19 tháng 9 2018

Đáp án C

Kẻ hinh chữ nhật A B C D như hình vẽ bên  ⇒ S D ⊥ A B C D

Diện tích tam giác ABC là S A B C = 1 2 . A B . A C = a 2

Suy ra V S . A B C = 1 3 . S D . S Δ A B C = a 2 3 . S D = 2 3 a 3 ⇒ S D = 2 a .

Bán kính mặt cầu ngoại tiếp khối chóp S . A B D C là

R = R A B D C 2 + S D 2 4 = a 5 2 2 + 2 a 2 4 = 3 a 2

Vậy bán kính mặt cầu cần tính là  R = 3 a 2 .

1 tháng 9 2017

Gọi O, I lần lượt là trung điểm của AC, SC.

Ta có:

 

∆ A B C  vuông cân tại B  O là tâm đường tròn ngoại tiếp và A C = A B 2 = a 2 .

∆ S A C  vuông tại A, I là trung điểm của S C ⇒ I S = I C = I A 2  

Từ (1), (2) suy ra I là tâm mặt cầu ngoại tiếp hình chóp S.ABC, bán kính

Chọn: A

23 tháng 5 2018

Dựng tam giác đều IAB (I và C cùng phía bờ AB). Ta có ∠ I B C = 120 ° - 60 ° = 60 ° và IB=BC nên DIBC đều, IA=IB=IC=a

Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.

Gọi M là trung điểm của SA.

2 tháng 8 2017

Chọn D

12 tháng 1 2017

26 tháng 1 2019