Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Xét ΔAEBΔAEB và ΔAHCΔAHC có:
ˆAA^ chung
ˆAEB=ˆAHC=90oAEB^=AHC^=90o
⇒ΔAEB∼ΔAHC⇒ΔAEB∼ΔAHC (g.g)
⇒AEAH=ABAC⇒AEAH=ABAC (hai cạnh tương ứng tỉ lệ)
⇒AE.AC=AB.AH⇒AE.AC=AB.AH (1)
Xét ΔAFDΔAFD và ΔAKCΔAKC có:
ˆAA^ chung
ˆAFD=ˆAKC=90oAFD^=AKC^=90o
⇒ΔAFD=ΔAKC⇒ΔAFD=ΔAKC (g.g)
⇒AFAK=ADAC⇒AFAK=ADAC (hai cạnh tương ứng bằng nhau)
⇒AF.AC=AK.AD⇒AF.AC=AK.AD (2)
Ta có OE=OF (suy ra từ ΔOEB=ΔOFDΔOEB=ΔOFD câu a)
OA=OC (tính chất hình bình hành)
⇒OA−OE=OC−OF⇒OA−OE=OC−OF hay AE=FCAE=FC (3)
Từ (1), (2) và (3) suy ra
AB.AH+AK.AD=AE.AC+AF.ACAB.AH+AK.AD=AE.AC+AF.AC
=AC(AE+AF)=AC(FC+AF)=AC2=AC(AE+AF)=AC(FC+AF)=AC2 (đpcm)
Xét\(\Delta AEB\)và\(\Delta AHCC\)có:
\(\widehat{A}\) chung
\(\widehat{AEB}=\widehat{AHC}=90^o\)
\(\Rightarrow\Delta ABE~\Delta AHC\left(g.g\right)\)
\(\Rightarrow\frac{AE}{AH}=\frac{AB}{AC}\)(hai cạnh tương ứng tỉ lệ)
\(\Rightarrow AE.AC=AB.AH\left(1\right)\)
Xét \(\Delta AFD\)và \(\Delta AKC\)có:
\(\widehat{A}\) chung
\(\widehat{AFD}=\widehat{AKC}=90^o\)
\(\Rightarrow\Delta AFD=\Delta AKC\left(g.g\right)\)
\(\Rightarrow\frac{AF}{AK}=\frac{AD}{AC}\)(hai cạnh tương ứng bằng nhau)
\(\Rightarrow AF.AC=AK.AD\left(2\right)\)
Ta có \(OE=OF\) (suy ra từ \(\Delta OEB=\Delta OFD\)trong câu a)
\(OA=OC\)(tính chất hình bình hành)
\(\Rightarrow OA-OE=OC-OF\)hay \(AE=FC\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(AB.AH+AK.AD=AE.AC+AF.AC\)
\(=AC\left(AE+AF\right)+AC\left(FC+AF\right)=AC^2\)(đpcm)
......phần kia lỗi....
c) Dễ chứng minh: Tam giác ADK đồng dạng với tam giác ACN (g - g)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AK}{AN}\)
=> AD.AN = AC.AK (1)
Dễ chứng minh: Tam giác ABI đồng dạng với tam giác ACM (g - g)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AI}{AM}\)
=> AB.AM = AC.AI (2)
Từ (1) và (2)
=> AD.AN + AB.AM = AC.AK + AC.AI = AC.(AK + AI) = AC. (AK + IK + AI) = AC.(AK + IK + IC) = AC^2
A B C E F N M O D G
1. Vì \(\widehat{ADB}=\widehat{AEB}=90^0\) nên tứ giác AEBD nội tiếp đường tròn đường kính AB.
2. Tứ giác AEBD, AFCD nội tiếp và BE, CF tiếp xúc (O), suy ra:
\(\widehat{AED}=\widehat{ABC}=\widehat{ACF}=\widehat{ADF};\widehat{AFD}=\widehat{ADE}\)
Do đó \(\Delta\)EAD ~ \(\Delta\)DAF, suy ra \(AD^2=AE.AF\)
3. Ta có \(AE.AF=\left(AM+AN\right)^2=\frac{\left(AE+AF\right)^2}{4}\Leftrightarrow\left(AE-AF\right)^2=0\Leftrightarrow AE=AF\)
Từ đó \(\Delta\)AEG = \(\Delta\)AFG (Cạnh huyền.Cạnh góc vuông), suy ra GA là phân giác góc BGC
Mà \(\Delta\)GBC cân tại G nên GA là trung trực BC hay \(\Delta\)ABC cân tại A
Vậy đường cao AD trùng với AO hay A,O,D thẳng hàng.
Cho hình bình hành ABCD có góc A nhọn (AB<AD) Tia phân giác BAD cắt BC tại M và cắt DC tại N Gọi K là tâm đường tròn ngoại tiếp tam giác MCN
a) C/m: DN=BC và CK vuông góc MN
Do ∡A nhọn và AB < AD nên tia phân giác ∡A cắt
BC tại M∊đoạn BC và N ngoài đoạn DC ( C nằm giữa D,N)
∡BAM = ∡MAD (AM là pg) và ∡BAN = ∡DNA (sl trong)
→∡DAN = ∡DNA → ∆ADN cân đỉnh D → DN = AD = BC
Xét ∆MCN có ∡DAN = ∡DNA ( cm trên) ,
∡DAN = ∡CMN ( đồng vị) →∡CNM = ∡CMN
→ ∆MCN cân đỉnh C → K thuộc trung trực MN
→ CK vuông góc MN
b) C/m BKCD nội tiếp
Gọi E là trung điểm MC, F là trung điểm CN ta có :
KE vuông góc MC, KF vuông góc CN , BE = DF
xét ∆KEC và ∆KFC là 2 ∆ vuông có CK chung,
∡ECK = ∡FCK ( ∆MCN tại C và CK là trung trực, pg...)
→ ∆KEC = ∆KFC → EK = FK
xét hai tam giác vuông ∆KEB và ∆KFD có BE = DF (cm trên)
KE = KF (cm trên) → ∆KEB = ∆KFD →∡KBE = ∡KDF
hay ∡KBC = ∡KDC . B và D cùng phía so với đường thẳng
CK mà ∡KBC = ∡KDC → B, C, D, K thuộc đường tròn
( quỹ tích cung chứa góc ) → BKCD nội tiếp
bức tranh được UNESCO công nhận là bức tranh đẹp nhất thế giới. Có 1 0 2
?o?n th?ng j_1: ?o?n th?ng [A, B] ?o?n th?ng k_1: ?o?n th?ng [B, C] ?o?n th?ng l_1: ?o?n th?ng [A, C] ?o?n th?ng r_1: ?o?n th?ng [A, M] ?o?n th?ng s_1: ?o?n th?ng [A, D] ?o?n th?ng t_1: ?o?n th?ng [A, N] ?o?n th?ng e_1: ?o?n th?ng [E, M] ?o?n th?ng f_2: ?o?n th?ng [P, N] ?o?n th?ng g_2: ?o?n th?ng [F, M] ?o?n th?ng h_2: ?o?n th?ng [Q, N] ?o?n th?ng i_2: ?o?n th?ng [P, Q] ?o?n th?ng j_2: ?o?n th?ng [F, E] ?o?n th?ng k_2: ?o?n th?ng [P, F] A = (-13.33, -6.93) A = (-13.33, -6.93) A = (-13.33, -6.93) B = (-16.03, -13.14) B = (-16.03, -13.14) B = (-16.03, -13.14) C = (-5.8, -13.23) C = (-5.8, -13.23) C = (-5.8, -13.23) ?i?m D: Giao ?i?m c?a m_1, k_1 ?i?m D: Giao ?i?m c?a m_1, k_1 ?i?m D: Giao ?i?m c?a m_1, k_1 ?i?m M: ?i?m tr�n k_1 ?i?m M: ?i?m tr�n k_1 ?i?m M: ?i?m tr�n k_1 ?i?m N: Giao ?i?m c?a k_1, q_1 ?i?m N: Giao ?i?m c?a k_1, q_1 ?i?m N: Giao ?i?m c?a k_1, q_1 ?i?m E: Giao ?i?m c?a a_1, j_1 ?i?m E: Giao ?i?m c?a a_1, j_1 ?i?m E: Giao ?i?m c?a a_1, j_1 ?i?m P: Giao ?i?m c?a c_1, j_1 ?i?m P: Giao ?i?m c?a c_1, j_1 ?i?m P: Giao ?i?m c?a c_1, j_1 ?i?m F: Giao ?i?m c?a b_1, l_1 ?i?m F: Giao ?i?m c?a b_1, l_1 ?i?m F: Giao ?i?m c?a b_1, l_1 ?i?m Q: Giao ?i?m c?a d_1, l_1 ?i?m Q: Giao ?i?m c?a d_1, l_1 ?i?m Q: Giao ?i?m c?a d_1, l_1 TenVanBan1 = "S_1" TenVanBan1 = "S_1" TenVanBan2 = "S_2" TenVanBan2 = "S_2" I J
a. Ta có AD là phân giác góc BAC; AD cũng là phân giác góc MAN nên \(\widehat{BAM}=\widehat{CAN.}\)
Vậy thì \(\widehat{PAN}=\widehat{FAM}\) (Vì cùng bằng \(\widehat{BAC}-\widehat{NAC}=\widehat{BAC}-\widehat{MAB}\) )
Từ đó suy ra \(\Delta PAN\sim\Delta FAM\left(g-g\right)\Rightarrow\widehat{PNA}=\widehat{FMA}\left(1\right)\)
Ta thấy \(\widehat{APN}=\widehat{AQN}=90^o\Rightarrow\)P, A,Q, N cùng thuộc một đường tròn. Vậy \(\widehat{PNA}=\widehat{PQA}\left(2\right)\)
Tương tự \(\widehat{FMA}=\widehat{FEA}\left(3\right)\)
Từ (1); (2); (3) suy ra \(\widehat{PQF}=\widehat{PEF}\) hay tứ giác PEQF là tứ giác nội tiếp. Vậy P, E, Q, F cùng thuộc một đường tròn.
b. Gọi I, J là hình chiếu của D trên AB và AC. Khi đó ta thấy ngay DI = DJ.
Ta có: \(\frac{NC}{DC}=\frac{NQ}{DJ};\frac{BM}{BD}=\frac{EM}{DI}\Rightarrow\frac{NC}{CD}.\frac{BD}{BM}=\frac{NQ}{EM}\Rightarrow\frac{CN}{BM}.\frac{BD}{CD}=\frac{NQ}{EM}\)
\(\Rightarrow\frac{CN}{BM}.\frac{AB}{AC}=\frac{NQ}{EM}\)
\(\frac{BD}{BN}=\frac{DI}{NP};\frac{CD}{CM}=\frac{DJ}{MF}\Rightarrow\frac{CM}{BN}.\frac{AB}{AC}=\frac{MF}{NP}\)
\(\Rightarrow\frac{AB^2.CM.CN}{AC^2.BM.BN}=\frac{NQ}{EM}.\frac{MF}{NP}\)
Lại có \(\Delta PNQ\sim\Delta FME\left(g-g\right)\Rightarrow\frac{NQ}{ME}=\frac{PN}{MF}\Rightarrow\frac{NQ}{ME}.\frac{MF}{PN}=1\)
\(\Rightarrow\frac{AB^2.CM.CN}{AC^2.BM.BN}=1\Rightarrow\frac{AB^2}{AC^2}=\frac{BM.BN}{CM.CN}.\)
a, HS tự chứng minh
b, HS tự chứng minh
c, Chú ý ∆AKD:∆ANC (g.g) và ∆ABI:∆ACM (g.g). Từ đó tính được AD.AN và AB.AM