Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(det=\left|\begin{matrix}1&-m\\m&1\end{matrix}\right|=1+m^2\ne0\) với mọi m => Hệ phương trình bậc nhất hai ẩn luôn có nghiệm
b) Ta có:
x0 - my0 = 2 - 4m
mx0 + y0 = 3m + 1
Hay là:
x0 - 2 = m (y0 - 4)
y0 - 1 = m (3 - x0)
=> Chia hai vế cho nhau ta được
\(\frac{x_0-2}{y_0-1}=\frac{y_0-4}{3-x_0}\)
=> (x0 - 2)(3 - x0) = (y0 - 4)(y0 - 1)
=> -x02 + 5x0 - 6 = y02 - 5y0 + 4
=> x02 + y02 - 5(x0 + y0) = -10
ĐPCM
Lời giải:
a)
$x\geq 1$ thì $y=-x-11$
$1> x\geq -2$ thì $y=-7x-5$
$x< -2$ thì $y=x+11$
Đồ thị:
b) Biện luận PT $3|x-1|-4|x+2|=m(*)$
Điểm ở đỉnh là giao của $y=x+11$ và $y=-7x-5$. Ta dễ dàng xác định được điểm đó có tọa độ $(-2; 9)$
Do đó:
Nếu $m>9$ thì PT $(*)$ vô nghiệm.
Nếu $m=9$ thì PT $(*)$ có 1 nghiệm duy nhất.
Nếu $m< 9$ thì PT $(*)$ có 2 nghiệm phân biệt
Bài 2:
a: A={1/x(x+1)|\(x\in N;1< =x< =5\)}
b: B={x/(x^2-1)|\(x\in N;2< =x< =6\)}
Đáp án: D
Để hệ phương trình có nghiệm thì phương trình (1) có nghiệm, tức là:
Vậy giá trị lớn nhất của m để hệ phương trình có nghiệm là 6.