Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Biểu diễn tập A,B trên trục số bạn sẽ thấy để $A\cap B$ nhận 1 giá trị duy nhất khi:
\(\left[\begin{matrix} m^2+1=3m-1\\ -3=4(\text{vô lý})\end{matrix}\right.\Rightarrow m^2-3m+2=0\Leftrightarrow (m-1)(m-2)=0\)
\(\Rightarrow \left[\begin{matrix} m=1\\ m=2\end{matrix}\right.\)
Thử lại thấy $m=2$ không thỏa mãn vì khi đó $3m-1>4$
Vậy có 1 giá trị nguyên của $m$ thỏa mãn
Đáp án C
Lời giải:
Biểu diễn tập A,B trên trục số bạn sẽ thấy để $A\cap B$ nhận 1 giá trị duy nhất khi:
\(\left[\begin{matrix} m^2+1=3m-1\\ -3=4(\text{vô lý})\end{matrix}\right.\Rightarrow m^2-3m+2=0\Leftrightarrow (m-1)(m-2)=0\)
\(\Rightarrow \left[\begin{matrix} m=1\\ m=2\end{matrix}\right.\)
Thử lại thấy $m=2$ không thỏa mãn vì khi đó $3m-1>4$
Vậy có 1 giá trị nguyên của $m$ thỏa mãn
Đáp án C
\(C_RB=R\text{B}=\left(-\infty;3m-1\right)\cup\left(3m+3;+\infty\right)\)
Để A là tập con của \(C_RB\) thì
3m-1>=m
=>2m>=1
=>m>=1/2
1/ Có đúng 1 nghiệm \(3\le\) => nghiệm còn lại lớn hơn 3
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x_1-3\right)\left(x_2-3\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+3\right)^2-4\left(2m+2\right)>0\\x_1x_2-3\left(x_1+x_2\right)+9\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+1>0\\2m+2-3\left(m+3\right)+9\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2>0\Rightarrow m\ne1\\-m+2\le0\Leftrightarrow m\ge2\end{matrix}\right.\)
\(\Rightarrow m\in[2;+\infty)\)
Bài 2:
Câu này lm ko bt có đúng ko =.=
\(\Delta'=4-3m-6=-2-3m\)
Để pt có 2 n0 pb<=> -2-3m> 0<=> m<-2/3
\(\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\left(5-x_1\right)\left(5-x_2\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\25-5\left(x_1+x_2\right)+x_1x_2\ge0\end{matrix}\right.\)
Dùng Vi-ét để tìm nốt
Đáp án B