Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(I=\int\frac{dx}{\left(3\tan^2x-2\tan x-1\right)\cos^2x}=\int\frac{d\left(\tan x\right)}{3\tan^2x-2\tan x-1}\)
Đặt \(t=\tan x\Rightarrow I=\int\frac{dt}{3t^2-2t-1}=\frac{1}{3}.\frac{1}{t+\frac{1}{3}}\int\left(\frac{1}{t-1}-\frac{1}{t+\frac{1}{3}}\right)dt\)
= \(\frac{1}{4}\ln\left|\frac{t-1}{t+\frac{1}{3}}\right|=\frac{1}{4}\ln\left|\frac{3t-3}{3t +3}\right|+C\)
Thay trả lại :
\(t=\tan x\Rightarrow I=\frac{1}{4}\ln\left|\frac{3\tan x-3}{3\tan x+1}\right|+C\)
\(I=\frac{1}{\sqrt{a^2+b^2}}\int\frac{dx}{\sin\left(x+\alpha\right)}=\frac{1}{\sqrt{a^2+b^2}}\int\frac{dx}{2\sin\frac{x+\alpha}{2}.\cos\frac{x+\alpha}{2}}=\frac{1}{\sqrt{a^2+b^2}}\int\frac{dx}{2\tan\frac{x+\alpha}{2}.\cos^2\frac{x+\alpha}{2}}\)
\(\Rightarrow\frac{1}{\sqrt{a^2+b^2}}\int\frac{d\left(\tan\frac{x+\alpha}{2}\right)}{\tan\frac{x+\alpha}{2}}=\frac{1}{\sqrt{a^2+b^2}}\ln\left|\tan\frac{x+\alpha}{2}\right|+C\)
Lời giải:
Ta có:
\(F(x)=\int f(x)dx=\int e^x\cos xdx\)
Đặt \(\left\{\begin{matrix} u=e^x\\ dv=\cos xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=e^xdx\\ v=\int \cos xdx=\sin x\end{matrix}\right.\)
Do đó:
\(F(x)=\int e^x\cos xdx=e^x\sin x-\int \sin x.e^xdx+c\) (1)
Đặt \(\left\{\begin{matrix} u=e^x\\ dv=\sin xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=e^xdx\\ v=\int \sin xdx=-cos x\end{matrix}\right.\)
\(\Rightarrow \int \sin x.e^xdx=-\cos x.e^x+\int \cos x.e^xdx+c\) (2)
Từ (1)(2) suy ra:
\(F(x)=e^x.\sin x+\cos x.e^x-\int \cos x.e^xdx+c\)
\(\Leftrightarrow F(x)=e^x\sin x+e^x\cos x-F(x)+c\)
\(\Leftrightarrow F(x)=\frac{1}{2}e^x(\sin x+\cos x)+c\)
Do đó: \(a=b=\frac{1}{2}\)
\(tana+tanb=\frac{sina}{cosa}+\frac{sinb}{cosb}=\frac{sina.cosb+cosa.sinb}{cosa.cosb}=\frac{sin\left(a+b\right)}{cosa.cosb}\)
\(cota+cotb=\frac{sina.cosb+cosa.sinb}{sina.sinb}=\frac{sin\left(a+b\right)}{sina.sinb}\)
\(\Rightarrow f\left(x\right)=\frac{cosx.cos3x.cos4x}{sin4x}-\frac{sinx.sin3x.cos4x}{sin4x}=\frac{cos4x}{sin4x}\left(cosx.cos3x-sinx.sin3x\right)=\frac{cos^24x}{sin4x}\)
\(\int\frac{cos^24x}{sin4x}dx=\int\left(\frac{1}{sin4x}-sin4x\right)dx=\int\frac{sin4x}{1-cos^24x}dx-\int sin4xdx\)
\(-\int\frac{d\left(cos4x\right)}{1-cos^24x}-\int sin4xdx=-\frac{1}{2}ln\left|\frac{1+cos4x}{1-cos4x}\right|+\frac{1}{4}cos4x\)
Bạn tự thế cận vào tính kết quả và so sánh
a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)
\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)
\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)
\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)
Vậy:
\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)
\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)
a)
Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)
\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)
\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)
b)
\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)
\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)
c)
Có \(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).
Đặt \(x+1=t\)
\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)
\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)
\(\int e^x.\cos xdx\)
= \(\int\cos xd\left(e^x\right)\)
= ex . cos x - \(\int e^xd\left(\cos x\right)\)
= ex cos x + \(\int\sin x.e^xdx\)
= ex cos x + \(\int\sin xd\left(e^x\right)\)
= ex cos x + sin x . ex - \(\int e^xd\left(\sin x\right)\)
= ex ( cos x - sin x ) - \(\int e^x.\cos xdx\)
= \(\int e^x.\cos x=\dfrac{e^x\left(\cos x+\sin x\right)}{2}\)
Vậy a = b = \(\dfrac{1}{2}\)
Chọn D.
Đặt u = x d v = sin x d x ⇒ d u = d x v = - cos x