K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2017

Đáp án C

Ta thấy d: y = x + 3 có a = 1 và d': y = -2x có a' = -2 ⇒ a  ≠ a' (1  -2) nên d cắt d'

30 tháng 5 2017

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

25 tháng 6 2019

OMG!! Cái đề bài dài như Vạn Lý Trường Thành thế kia! Đau mắt quá! :D

a/ Gọi pt (d) có dạng: y= ax+b (\(a\ne0\) )

Có (d)//(d1)\(\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne-5\end{matrix}\right.\)

\(M\left(1;5\right)\in\left(d\right)\)

Thay xM= 1; yM= 5 vào (d) có:

\(2.1+b=5\Leftrightarrow b=3\) (t/m)

Vậy (d) y= 2x+3

b/ (d2) y= x+1

Vì (d)\(\perp\left(d_3\right)\)

\(\Rightarrow a.\frac{1}{2}=-1\Leftrightarrow a=-2\)

Vì (d) cắt (d2) tại điểm có tung độ =3

\(\Rightarrow\) Thay y=3 vào (d2) có:

x+1= 3=>x= 2

Thay y= 3, x= 2 vào (d)

\(-2.2+b=3\Leftrightarrow b=7\)

Vậy (d) y= -2x+7

c/ Vì (d) đi qua gốc toạ độ=> (d) y=ax

Xét PTHĐGĐ (d4) và (d5):

\(2x+4=-x-5\Leftrightarrow x=-3\Rightarrow y=-2\)

Thay x= -3; y= -2 vào (d)

-3a= -2

\(a=\frac{2}{3}\)

Vậy (d) y= \(\frac{2}{3}x\)

d/ Vì (d) vuông góc ....

\(\Rightarrow a.\frac{1}{3}=-1\Rightarrow a=-3\)

Vì A(3;-1) \(\in\left(d\right)\)

thay xA​= 3; yA= -1 vào (d)

\(-3.3+b=-1\Leftrightarrow b=8\)

Vậy (d) y= -3x+8

e/ Vì (d) cắt trục hoành....

\(\Rightarrow y=0;x=-1\)

Thay vào (d)

-a+b= 0(1)

Có N(-2;3)\(\in\left(d\right)\)

Thay xN= -2;yN= 3 vào (d)

-2a+b= 3(2)

Từ (1) và (2) ta có hpt:

\(\left\{{}\begin{matrix}b-a=0\\b-2a=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=-3\end{matrix}\right.\)

Vậy (d)y= -3a-3

25 tháng 6 2019

Mình cảm ơn ạ ❤

10 tháng 8 2020

Phương trình đường thẳng (d) luôn có dạng :

\(y=ax+b\left(d\right)\)

a/ Ta có : \(\left(d\right)\) đi qua hai điểm \(A\left(2,7\right);B\left(-1;-2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}7=2a+b\\-2=-a+b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)

Vậy...

b/ Ta có : \(\left(d\right)\backslash\backslash\left(d_1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b\ne-6\end{matrix}\right.\)

\(\Leftrightarrow a=-2\)

Phương trình hoành độ giao điểm của \(\left(d_2\right);\left(d_3\right)\) là :

\(2x+1=-x+4\)

\(\Leftrightarrow3x=3\)

\(\Leftrightarrow x=1\)

\(\Leftrightarrow y=3\)

Tọa độ giao điểm của \(\left(d_2\right);\left(d_3\right)\)\(H\left(1;3\right)\)

Lại có : \(\left(d\right)\) đi qua \(H\left(1;3\right)\)

\(\Leftrightarrow3=a+b\)

\(\Leftrightarrow b=5\)

Vậy....

c/ Ta có : \(\left(d\right)\) đi qua \(C\left(-2;1\right)\)

\(\Leftrightarrow-2=a+b\)

Lại có : \(\left(d\right)\perp\left(d_4\right)\)

\(\Leftrightarrow a.\frac{-1}{2}=1\)

\(\Leftrightarrow a=-2\)

\(\Leftrightarrow b=0\)

Vậy...

a: Để hai đường song song thì

\(\left\{{}\begin{matrix}2m^2-m=1\\m^2+m< >2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(2m+1\right)=0\\\left(m+2\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

b: Thay x=2 vào (d1), ta đc:

\(y=2+2=4\)

Vì (d3) vuông góc với (d1) nên (d3): y=-x+b

Thay x=2 và y=4 vào (d3), ta được:

b-2=4

=>b=6

 

30 tháng 11 2020

\(\left(d_1\right)y=2x-3\)

a, \(\left(d\right)//\left(d_1\right)\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)

b, \(a=tan\alpha=tan135^o=-1\)

4 tháng 4 2021

Xét pt tọa độ giao điểm:

X²=(m+4)x-2m-5

<=> -x²+(m+4)x-2m-5

a=-1.   b= m+4.  c=2m-5

Để pt có 2 No pb =>∆>0

=> (m+4)²-4×(-1)×2m-5>0

=> m² +2×m×4+16 +8m-20>0

=> m²+9m -2>0

=> x<-9 và x>0

 

 

31 tháng 5 2019

câu a.

hoành độ giao điemr của ( d) và ( P) là no pt ta có:

x^2=(m-2)x+3

<=> x^2-(m-2)x-3=0

thay m=5/2 ta được:

x^2-(5/2-2)x-3=0

<=> x^2-1/2x-3=0

theo đenta bn tự tính tiweeps ha

31 tháng 5 2019

b, từ : 

x^2-(m-2)x-3=0

bn tìm đenta

sau đó cho đenta >0

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\) Xác định hệ số a,b trong mỗi trường hợp sau: a.(d) đi qua A(-1;4);B(2;-3) b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3 c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\) d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1 e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1 f.(d) có...
Đọc tiếp

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\)

Xác định hệ số a,b trong mỗi trường hợp sau:

a.(d) đi qua A(-1;4);B(2;-3)

b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3

c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\)

d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1

e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1

f.(d) có hệ số góc bằng 2 và đi qua điểm nằm trên đường thẳng y=2x-3 có tung độ bằng 1

Bài 2:

a)Tìm điểm cố định của các đường thẳng sau:

\(y=mx-2m-1\)

\(y=mx+m-1\)

y=(m+1)x+2m-3

b) Chứng minh đường thẳng \(y=\left(m-1\right)x-2m+3\) luôn đi qua 1 điểm cố định thuộc (P):y=\(\frac{1}{4}x^2\)

c)Chứng minh đường thẳng y=2mx+1-m luôn đi qua 1 điểm cố định thuộc (P) y=\(4x^2\)

3
NV
4 tháng 5 2019

Bài 1:

a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)

b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)

\(3=-5.2+b\Rightarrow b=13\)

c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)

\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)

d/ \(b=2\Rightarrow y=ax+2\)

d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)

\(\Rightarrow0=a+2\Rightarrow a=-2\)

e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)

f/ \(a=2\)

Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)

\(\Rightarrow1=2.2+b\Rightarrow b=-3\)

NV
4 tháng 5 2019

Bài 2:

\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)

\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)

\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)

\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)