Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
Mình làm tách riêng nha:
a) \(M+N\)
\(M+N=\left(3xyz-3x^2+5xy-1\right)+\left(5x^2+xyz-5xy+3-y\right)\)
\(M+N=\left(3xyz+xyz\right)+\left(-3x^2+5x^2\right)+\left(5xy-5xy\right)+\left(-1+3\right)-y\)
\(M+N=4xyz+2x^2+2-y\)
b) \(M-N\)
\(M-N=3xyz-3x^2+5xy-1-5x^2-xyz+5xy-3+y\)
\(=\left(3xyz-xyz\right)+\left(-3x^2-5x^2\right)+\left(5xy+5xy\right)+\left(-1-3\right)+y\)
\(=2xyz-8x^2+10xy-4+y\)
\(\)
Bài 1:
\(A+B=7x^2-3xy+2y^2\)
\(A-B=x^2-7xy+4y^2\)
Bài 2:
a) \(M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)
\(M=x^2+11xy-y^2\)
b) \(N=\left(3xy-4y^2\right)-\left(x^2-7xy+8y^2\right)\)
\(N=-x^2-12y^2+10xy\)
Ta có:
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
\(M+N=\) \(5x^3y+9xy^2-7,5xyz+y^3\)
\(M-N=\) \(x^3-xy^2+0,5xyz+y^3\)
Chúc Bạn Học Tốt
Ta có : \(M+N=3x^2y+4xy^2-3,5xyz+y^3+2x^3y+5xy^2-4xyz\)
\(=3x^2y+9xy^2-7,5xyz+y^3+2x^3y\)
\(M-N=3x^2y+4xy^2-3,5xyz+y^3-2x^3y-5xy^2+4xyz\)
\(=3x^2y-xy^2+0,5xyz+y^3-2x^3y\)
Lời giải:
a)
$M(x)=(x^5+5x^5)-2x^4-4x^3+3x$
$=6x^5-2x^4-4x^3+3x$
$N(x)=-6x^5+(7x^4-5x^4)+(x^3+3x^3)+4x^2-3x-1$
$=-6x^5+2x^4+4x^3+4x^2-3x-1$
b)
$M(-1)=6(-1)^5-2(-1)^4-4(-1)^3+3(-1)=-7$
$N(-2)=-6(-2)^5+2(-2)^4+4(-2)^3+4(-2)^2-3(-2)-1$
$=213$
c)
$M(x)+N(x)=(6x^5-2x^4-4x^3+3x)+(-6x^5+2x^4+4x^3+4x^2-3x-1)$
$=4x^2-1$
$M(x)-N(x)=(6x^5-2x^4-4x^3+3x)-(-6x^5+2x^4+4x^3+4x^2-3x-1)$
$=12x^5-4x^4-8x^3-4x^2+6x+1$
d)
$F(x)=M(x)+N(x)=4x^2-1=0\Leftrightarrow x^2=\frac{1}{4}$
$\Leftrightarrow x=\pm \frac{1}{2}$
Vậy $x=\pm \frac{1}{2}$ là nghiệm của $F(x)$
M + N = (3xyz – 3x2 + 5xy – 1) + (5x2 + xyz – 5xy + 3 – y)
= 3xyz – 3x2 + 5xy – 1 + 5x2 + xyz – 5xy + 3 – y
= (3xyz + xyz)+( –3x2 + 5x2) + (5xy – 5xy) – y + ( – 1+3)
= 4xyz + 2x2 – y + 2
M – N = (3xyz – 3x2 + 5xy – 1) – (5x2 + xyz – 5xy + 3 – y)
= 3xyz – 3x2 + 5xy – 1 – 5x2 – xyz + 5xy – 3 + y
= (– 3x2 – 5x2) + (3xyz – xyz) + (5xy + 5xy) + y +(– 1 – 3)
= –8x2 + 2xyz + 10xy + y – 4.
N – M = (5x2 + xyz – 5xy + 3 – y) – (3xyz – 3x2 + 5xy – 1)
= 5x2 + xyz – 5xy + 3 – y – 3xyz + 3x2 – 5xy +1
= (5x2 + 3x2)+ (xyz – 3xyz)+( – 5xy – 5xy) + (3 + 1 )– y
= 8x2 – 2xyz – 10xy – y + 4.
Chú ý: Vì M – N và N – M là hai đa thức đối nhau nên
N – M = 8x2 – 2xyz – 10xy – y + 4
(Ta chỉ cần đổi dấu mỗi hạng tử của đa thức M – N là thu được N – M).