Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề câu a) cho rõ lại
Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1
= x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1
= x-1 = 2012
B= (1/2-1/3) + (1/3-1/4) + (1/4-1/5)+...+( 1/99-1/100)
B = (1/2-1/3) + (1/3 - 1/4) + (1/4 - 1/5)+...+ (1/99 + 1/100)
B= 1/2 +1/100=51/100
k mk nhóe
sai thì chỉ mk nhoa
a)A=1/51+1/52+...+1/100
=>A>1/100+1/100+...+1/100
=>A>50/100(vì có 50 số hạng)
=> A>1/2
b)Ta có:
B=1/2.3+1/3.4+...+1/99.100
=> B=1/2-1/3+1/3-1/4+...+1/99-1/100
=> B=1/2-1/100
Mà 1/100>0
=> B<1/2
=> B<1/2<A
=>B<A
Cho \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
so sánh B với \(\frac{3}{4}\)
Ta có:\(\frac{1}{2^2}=\frac{1}{4}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
....
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}\)
B < \(\frac{1}{4}\) < \(\frac{3}{4}\)
\(\Leftrightarrow B< \frac{3}{4}\)
a, A = \(\frac{1}{2}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)
\(A=\frac{1}{2}.\left(\frac{3.4....99}{4.5...100}\right)\)
\(A=\frac{1}{2}.\left(\frac{3}{100}\right)\)\(\)\(A=\frac{3}{200}\)
\(B=\frac{2}{3}.\frac{4}{5}.\frac{5}{6}...\frac{100}{101}\)
\(B=\frac{2}{3}.\left(\frac{4.5...100}{5.6...101}\right)\)
\(B=\frac{2}{3}.\left(\frac{4}{101}\right)\)
\(B=\frac{8}{303}\)
\(A.B=\frac{8}{303}.\frac{3}{200}\)
\(A.B=\frac{1}{2525}\)
b, A = 1/2 x 3/100
B = 2/3 x 4/101
Ta có : 1 - 2/3 = 1/3; 1 - 1/2 = 1/2
MÀ 1/3 < 1/2 => 2/3 > 1/2 (1)
Ta có : 1 - 3/100 = 97/100
1 - 4/101 = 97/101
Mà 97/101 < 97/100 => 4/101 > 3/100 (2)
Từ (1) và (2) => B > A
a,
\(AB=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)
\(AB=\frac{\left[1\cdot3\cdot5\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)
b,
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\Leftrightarrow A< B\)
Ta có: \(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{100}{2^{101}}\)
\(A-\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
Ta có: \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}=1-\frac{1}{2^{100}}< 1\)
\(\Rightarrow\frac{1}{2}A< 1-\frac{100}{2^{101}}\)
\(\Rightarrow A< 2-\frac{200}{2^{101}}< 2\)
Vậy A<2
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
\(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3C=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow C+3C=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow4C< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}=D\)
Xét \(D=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
\(\frac{D}{3}=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(\Rightarrow D+\frac{D}{3}=1-\frac{1}{3^{100}}< 1\Rightarrow\frac{4D}{3}< 1\Rightarrow D< \frac{3}{4}\)
\(\Rightarrow4C< D< \frac{3}{4}\Rightarrow C< \frac{3}{16}\)
\(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3C=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^2}+...+\frac{99}{3^{89}}-\frac{100}{3^{99}}\)
\(\Rightarrow4C=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow4C< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\left(1\right)\)
Đặt: \(B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
\(\Rightarrow3B=2+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
\(4B=B+3B=3-\frac{1}{3^{99}}< 3\)
\(\Rightarrow B< \frac{3}{4}\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow4C< B< \frac{3}{4}\)
\(\Rightarrow C< \frac{3}{16}\left(đpcm\right)\)
(Đánh nhanh quá sai chỗ nào thông cảm nha :))
B = 1 2 ! + 2 3 ! + 3 4 ! + ... + 99 100 ! B = 2 − 1 2 ! + 3 − 1 3 ! + 4 − 1 4 ! + ... + 100 − 1 100 ! B = 2 2 ! − 1 2 ! + 3 3 ! − 1 3 ! + 4 4 ! − 1 4 ! + ... + 100 100 ! − 1 100 ! B = 1 1 ! − 1 2 ! + 1 2 ! − 1 3 ! + 1 3 ! − 1 4 ! + ... + 1 99 ! − 1 100 ! B = 1 − 1 100 ! < 1
Vậy B<1