K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Gọi (O’) là đường tròn đi qua bốn điểm B, H,C, K. Ta có dây cung  B C = R 3

BKC=60o= BAC nên bán kính đường tròn (O’) bằng bán kính R của đường tròn (O).

Gọi M là giao điểm của AH và BC thì MH vuông góc vi BC, k KN vuông góc vi BC (N thuc BC), gọi I là giao điểm của HK và BC.

Bài giảng học thử

Video không hỗ trỡ trên thiết bị của bạn!

Bài 8. Bài toán hai tiếp tuyến cắt nhau - Phần 2 - Tổng ôn Toán vào 10 - Cô Nguyễn Hồng Nhung

Gv. Nguyễn Hồng Nhung - 642.7 N lượt xem
1:5

Video không hỗ trỡ trên thiết bị của bạn!

Bài 1. Đại cương về hệ phương trình bậc nhất 2 ẩn - Phần 3 - Tổng ôn Toán vào 10 - Cô Nguyễn Hồng Nhung

Gv. Nguyễn Hồng Nhung - 318.2 N lượt xem
1:47

Video không hỗ trỡ trên thiết bị của bạn!

Bài 6. Ôn tập chương Phần 3 - Toán 9 - Thầy Trần Trung Hải

Gv. Trần Trung Hải - 195 N lượt xem
16:30

Video không hỗ trỡ trên thiết bị của bạn!

Dạng 1: Toán chuyển động - Phần 3. Chuyển động ngược xuôi trên sông - TỔNG ÔN Toán 9 - Cô Vương Thị Hạnh

Gv. Cô Vương Thị Hạnh - 33.5 N lượt xem
19:18

Video không hỗ trỡ trên thiết bị của bạn!

Bài học 2: Đề số 3 (Phần 2) - LUYỆN ĐỀ ôn thi vào 10 - Cô Vương Thị Hạnh

Gv. Cô Vương Thị Hạnh - 1.5 N lượt xem
20:53
Xem thêm các bài giảng khác »
Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

13 tháng 6 2016

đây là hình nhé, để cung cấp cho cách giải:

 
A) 

Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

13 tháng 6 2016

B) 

Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

8 tháng 5 2018

ó vẽ hình ko ?

9 tháng 5 2018

A B K O I H E M F

17 tháng 7 2020

O I K A E B H F C D G 1 1 2 2

a)

IO = OB – IB => (I) tiếp xúc trong với (O).

OK = OC – KC => (K) tiếp xúc trong với (O)

IK = OH + KH => (I) tiếp xúc ngoài với (K)

b)

Tứ giác AEHF có \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\)   nên là hình chứ nhật

c)

c) \(\Delta AHB\) vuông nên AE.AB = AH2

\(\Delta AHC\)vuông nên AF . AC = AH2

Suy ra AE . AB = AF . AC

d) Gọi G là giao điểm của AH và EF

Tứ giác AEHF là hình chữ nhật => AH = EF

Ta có : GE = GH => \(\Delta GEH\)\(\Rightarrow\widehat{E_1}=\widehat{H_1}\)

Ta lại có \(\Delta IHE\)cân \(\Rightarrow\widehat{E_2}=\widehat{H_2}\)

\(\Rightarrow\widehat{E_1}+\widehat{E_2}=\widehat{H_1}+\widehat{H_2}=90^o\)

Do đó EF là tiếp tuyến của đường tròn (I)

Tương tự, EF là tiếp tuyến của đường tròn (K)

e) - Cách 1:

Ta có: \(EF=AH\le OA\) ( OA có độ dài không đổi )

Do đó EF lớn nhất khi AH = OA

<=> H trùng O hay dây AD đi qua O.

Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.