Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chỉ cho cách lm ; bn tự lm cho bt nha
câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)
tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)
câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)
là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)
\(\left(C\right):\) \(\left(x-1\right)^2+\left(y+3\right)^2=5\) \(\Rightarrow\left\{{}\begin{matrix}I\left(1;-3\right)\\R=\sqrt{5}\end{matrix}\right.\)
a/ Gọi \(d'//d\) \(\Rightarrow\) phương trình d' có dạng: \(2x+y+c=0\)
Do d' tiếp xúc (C) \(\Rightarrow d\left(I;d'\right)=R\)
\(\Leftrightarrow\frac{\left|2.1-3.1+c\right|}{\sqrt{2^2+1^2}}=\sqrt{5}\) \(\Leftrightarrow\left|c-1\right|=5\Rightarrow\left[{}\begin{matrix}c=6\\c=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x+y+6=0\\2x+y-4=0\end{matrix}\right.\)
- Với \(2x+y+6=0\Rightarrow y=-2x-6\)
\(\Rightarrow x^2+\left(-2x-6\right)^2-2x+6\left(-2x-6\right)+5=0\)
\(\Rightarrow x=-1\Rightarrow y=-4\Rightarrow A\left(-1;-4\right)\)
- Với \(2x+y-4=0\Rightarrow y=4-2x\)
\(\Rightarrow x^2+\left(4-2x\right)^2-2x+6\left(4-2x\right)+5=0\)
\(\Rightarrow x=3\Rightarrow y=-2\Rightarrow B\left(3;-2\right)\)
b/
Gọi \(d_1\) là đường thẳng vuông góc với \(d\Rightarrow d_1\) có dạng: \(x-2y+c=0\)
Do \(d_1\) tiếp xúc (C) nên \(d\left(I;d_1\right)=R\)
\(\Leftrightarrow\frac{\left|1.1-2.\left(-3\right)+c\right|}{\sqrt{1^2+\left(-2\right)^2}}=\sqrt{5}\) \(\Leftrightarrow\left|c+7\right|=5\Rightarrow\left[{}\begin{matrix}c=-2\\c=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-2y-2=0\\x-2y-12=0\end{matrix}\right.\)
Bạn tự thay vào tính tiếp điểm như bài trên
Bài 1:
\(2c=8\Rightarrow c=4\)
Gọi phương trình (E) có dạng \(\frac{x^2}{a^2}+\frac{y^2}{a^2-16}=1\)
Do A thuộc (E) nên \(\frac{0}{a^2}+\frac{9}{a^2-16}=1\Rightarrow a^2=25\)
Phương trình (E): \(\frac{x^2}{25}+\frac{y^2}{9}=1\)
Bài 2:
\(2a=10\Rightarrow a=5\)
\(e=\frac{c}{a}\Rightarrow c=e.a=\frac{3}{5}.5=3\)
Phương trình elip:
\(\frac{x^2}{25}+\frac{y^2}{16}=1\)
Câu 3:
\(x-2y+3=0\Rightarrow x=2y-3\)
Thay vào pt đường tròn ta được:
\(\left(2y-3\right)^2+y^2-2\left(2y-3\right)-4y=0\)
\(\Leftrightarrow5y^2-20y+15=0\)
\(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=3\Rightarrow x=3\end{matrix}\right.\)
Tọa độ 2 giao điểm: \(A\left(-1;1\right)\) và \(B\left(3;3\right)\)
Câu 4:
Gọi d' là đường thẳng song song với d \(\Rightarrow\) pt d' có dạng \(x-y+c=0\)
Do d' tiếp xúc với (C) nên \(d\left(I;d'\right)=R\)
\(\Rightarrow\frac{\left|0.1-0.1+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Rightarrow\left|c\right|=2\Rightarrow c=\pm2\)
Có 2 pt đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y+2=0\\x-y-2=0\end{matrix}\right.\)
Bài 2:
Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)
a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?
Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\) và \(\Delta_2\) với đường tròn?
b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?
Bài 1b/
\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt
Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)
\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\) và \(\left(1;3\right)\)
TH1: d' có pt dạng \(3x-y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)
TH2: d' có dạng \(x+3y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)
a)\(\Rightarrow d:4x+5y+14=0\)
\(d':4x+5y+14=0\)
Ta có: \(\dfrac{4}{4}=\dfrac{5}{5}=\dfrac{14}{14}\) \(\Rightarrow d\equiv d'\)
b) \(\Rightarrow d:x+2y-5=0\)
Ta có: \(\dfrac{1}{2}=\dfrac{2}{4}=\dfrac{-5}{-10}\) \(\Rightarrow d\equiv d'\)
c) Ta có: \(\dfrac{1}{2}\ne\dfrac{1}{1}\) \(\Rightarrow d\) cắt \(d'\)
Đáp án A
Phương trình tiếp tuyến có dạng
∆: 2x+ y+ m= 0.
Đường tròn (C) :
(x- 3) 2+ (y +1) 2= 5 có tâm I( 3; -1) và bán kính
Đường thẳng tiếp xúc với đường tròn (C) khi
Vậy có 2 đường thẳng thỏa mãn là:
2x+ y= 0 và 2x+ y -10= 0