K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2016

Bài 2:

a) Ta có:

\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)

Vậy \(S\) \(\text{⋮}\) \(-20\)

17 tháng 2 2016

Bài 1:

Ta có:

\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)

\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)

\(=\left(-12\right).m^2.3.n^3\)

\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)

Xét: \(m^2\ge0\) với V m

3>0 nên \(m^2.3\ge0\) với V m

Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)

-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)

Vậy với n<0 và mọi m thì \(A\ge0\)

 

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Lời giải:

\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)

Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)

Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)

Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)

29 tháng 4 2016

Câu 1. 

A =  {15;16;17;18;19}  (0,25đ)

Câu 2. 

a.  2.(72 – 2.32) – 60

            = 2.(49 – 2.9) – 60              (0,25đ)

= 2.31 – 60              (0,25đ)

            = 62 – 60  = 2           (0,25đ)

b.   27.63 + 27.37

            = 27.(63 + 37)                  (0,25đ)

= 27.100          (0,25đ)

            = 2700          (0,25đ)

c. l-7l + (-8) + l-11l + 2

            = 7 + (-8) + 11 + 2        (0,5 đ)  

            = 12     (0,25đ)

d. 568 – 34 {5.l9 – ( 4-1)2l + 10}

        = 568 – 34 {5.[9-9] + 10}      (0,25đ)

=  568 – 34.10

= 568 – 340           (0,25đ)

      = 228               (0,25đ)

Câu 3. 

a)2x + 3 = 52 : 5

      2x + 3 =5              (0,25đ)

2x  = 5-3            (0,25đ)

2x   =2            (0,25đ)

x=1            (0,25đ)

b)

105 – ( x + 7) = 27 : 25

105 – ( x + 7) = 22             (0,25đ)

105 – ( x + 7) = 4            (0,25đ)

x + 7 = 105 – 4                (0,25đ)

x + 7 = 101                      (0,25đ)

x   =  101 – 7            (0,25đ)

x  = 94             (0,25đ)

Câu 4.

Gọi x (hs) là số học sinh lớp 6B phải tìm (30<x< 38, x)

Vì hs lớp 6B xếp 2,  hàng, 4 hàng, 8 hàng đều vừa đủ nên x⋮2; x⋮4; x8 hay x  ∈ BC{2;4;8}            (0,25đ)

Ta có: BCNN(2,4,8) = 8               (0,25đ)

⇒ BC(2,4,8) = B(8) ={0; 8; 16;24; 32; 40; …}

Mặt khác: 30<x< 38            (0,25đ)

Nên  x = 32

Vậy số học sinh lớp 6B là 32 học sinh    (0,25đ)

Câu 5. 

Khi M nằm giữa và cách đều hai điểm A và B     (0,5đ)

Vẽ được hình có điểm M là trung điểm của AB    (0,5đ)

Câu 6.a)

2015-12-24_155146

0,25đ

Điểm A nằm giữa O và B      (0,25đ)

Vì OA < OB  ( 4 < 8 )       (0,25đ)

Ta có: AO + AB = OB

3 + AB = 6        (0,25đ)

AB = 6 -3 = 3 cm          (0,25đ)

Vậy OA = AB = 3 cm         (0,25đ)

b)

Vì  A nằm giữa O, B và cách đều O và B ( OA = AB )          (0,25đ)

Nên A là trung điểm OB           (0,25đ)

29 tháng 4 2016

Chép trên mạng thôi  limdim

27 tháng 4 2016

bn tính máy tính ý phần a bn để 2 1^2 làm phân số là bằng 5^2 rùi bn thực hiện phép tính nhé

PHần b thi bn để 0,5 và 0,75 làm phân số rùi tính là ra thui ak

nếu cần giải ra thi bảo mk mk giải cho nhé nhưng làm như trên đc mà nhỉ

27 tháng 4 2016

a, (3^4.x +5^2).2^3=1^8

3^4.x+5^2=1^8: 2^3

3^4.x+5^2=3^16

rùi bn tính ra nhé

b, 1^3x-0,5x=0,75

x.(1^3-0,5)=0,75 

rùi bn đổi ra như mk bảo là đc nhé

26 tháng 2 2018

Chọn đáp án C.

26 tháng 11 2016

P = 7 + 72 + 73 + ... + 72016

=> P = 7( 1 + 7 + 72 + 73) + ... + 72013( 1 + 7 + 72 + 73)

=> P = 7( 1 + 7 + 49 + 343) + ... + 72013( 1 + 7 + 49 + 343)

=> P = 7 . 400 + ... + 72013 . 400

=> P = (7 + ... + 72013) . 400

=> P = (7 + ... + 72013) . 202 (đpcm)

29 tháng 12 2015

chịu

10 tháng 7 2019

Chọn C.

Phương pháp : Chú ý bình phương vô hướng bằng bình phương độ dài.

Câu 1: (2,5 điểm)    Cho biểu thức:a) Rút gọn A.b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0c) Tìm x để A = 1/2d) Tìm x nguyên để A nguyên dương.Câu 2: (1điểm)a) Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.b) Cho a < b, so sánh  – 3a +1 với – 3b + 1.HD:          a < b => -3a > -3bCâu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận...
Đọc tiếp

Câu 1: (2,5 đim)    Cho biểu thức:

2016-04-27_171121

a) Rút gọn A.

b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0

c) Tìm x để A = 1/2
d) Tìm x nguyên để A nguyên dương.

Câu 2: (1điểm)

a) Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.

b) Cho a < b, so sánh  – 3a +1 với – 3b + 1.

HD:          a < b => -3a > -3b

Câu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận tốc trung bình 15km/h. Lúc về, người đó chỉ đi với vận tốc trung bình 12km/h, nên thời gian về nhiều hơn thời gian đi là 45 phút. Tính độ dài quãng đường AB (bằng kilômet).

HD: Đổi 45’ = ¾ h, quãng đường AB = S => S = vt hay S/15 = S/12+3/4

2016-04-27_171454

Câu 4:  (1,0 điểm) Cho tam giác ABC có AD là phân giác trong của góc A. Tìm x trong hình vẽ sau với độ dài cho sẵn trong hình. 

2016-04-27_171602

 Câu 5: (1,5 điểm)

a. Viết công thức tính thể tích của hình hộp chữ nhật.

 b. Áp dụng: Tính thể tích của hình hộp chữ nhật với AA’ = 5cm, AB = 3cm, AD = 4cm (hình vẽ trên).

Câu 6:(2,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH.

a) Chứng minh: ∆ABC và ∆HBA đồng dạng với nhau.

 

  b) Chứng minh: AH2 = HB.HC.

  c) Tính độ dài các cạnh BC, AH.

9
29 tháng 4 2016

đây là nick phụ của bạn trần việt hà

29 tháng 4 2016

không phải

9 tháng 6 2016

Đặt ưcln(n+3,n+4)=d(d€N*)

=>{n+3,n+4 chia hếtcho d

=>{4n+12,3n+12 chia hết cho d

=>4n+12-(3n+12)chia hết cho d

=>4n+12-3n-12 chia hết cho d

=>1chia hết cho d

=>d€ Ư(1)={ +-1}

Vậy n+3,n+4 nguyên tố cùng nhau

b) Gọi d là ƯC ( 2n + 3 ; 6n + 8 )

=> ( 2n + 3 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d

=> 3 ( 2n + 9 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d

=> [ ( 6n + 9 ) - ( 6n + 8 ) ] \(⋮\)d

=> 1 \(⋮\)  d ; d \(\in\) N* 

=> d = 1

 Vậy ƯCLN ( 2n + 3 ; 6 n+ 8 ) = 1 => \(\frac{2n+3}{6n+8}\) là phân số tối giản.