Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A(x)=0
=>2x-6=0
hay x=3
b: B(x)=0
=>3x-6=0
hay x=2
c: M(x)=0
\(\Rightarrow x^2-3x+2=0\)
=>x=2 hoặc x=1
d: P(x)=0
=>(x+6)(x-1)=0
=>x=-6 hoặc x=1
e: Q(x)=0
=>x(x+1)=0
=>x=0 hoặc x=-1
a: \(B_2\cup B_4=B_4\)
\(B_4\cap B_6=B\left(12\right)\)
\(B_5\cap B_7=B\left(35\right)\)
b: \(B_n\subset B_m\) khi n là ước của m
\(B_n\cap B_m=B_{m\cdot n}\) khi ƯCLN(m,n)=1
Câu 6:
a: A={-1;1;3}
b: X={-1;1}; X={-1;1;3}; X={-1;3}
Câu 5:
Mệnh đề này sai vì chẳng có giá trị x là số hữu tỉ nào để \(x^2=2\) hết
Mệnh đề phủ định là: \(\overline{A}:\forall x\in Q,x^2< >2\)
1.
a, Lấy \(x_1;x_2\in\left(1;+\infty\right)\left(x_1\ne x_2\right)\)
\(\Rightarrow y_1-y_2=x_1^2-x^2_2+2mx_1-2mx_2=\left(x_1-x_2\right)\left(x_1+x_2+2m\right)\)
\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=x_1+x_2+2m\)
Hàm số đồng biến trên \(\left(1;+\infty\right)\) khi \(I>0\Leftrightarrow x_1+x_2+2m>0\)
Do \(x_1;x_2\in\left(1;+\infty\right)\Rightarrow x_1+x_2>2\Rightarrow2m\ge-2\Leftrightarrow m\ge-1\)
b, Lấy \(x_1;x_2\in\left(2;+\infty\right)\left(x_1\ne x_2\right)\)
\(\Rightarrow y_1-y_2=-x_1^2+x^2_2-4mx_1+4mx_2=\left(x_1-x_2\right)\left(-x_1-x_2-4m\right)\)
\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=-x_1-x_2-4m\)
Hàm số nghịch biến trên \(\left(2;+\infty\right)\) khi \(I< 0\Leftrightarrow-x_1-x_2-4m< 0\)
Do \(x_1;x_2\in\left(2;+\infty\right)\Rightarrow-x_1-x_2< 4\Rightarrow-4m\le-4\Leftrightarrow m\ge1\)
2.
a, \(f\left(0\right)=m-5;f\left(3\right)=m-8;f\left(1\right)=m-4\)
\(Minf\left(x\right)=\left\{f\left(0\right);f\left(3\right);f\left(1\right)\right\}=m-8=4\)
\(\Rightarrow m=12\)
1: A={-3;-2;-1;0;1;2;3}
B={2;-2;4;-4}
A giao B={2;-2}
A hợp B={-3;-2;-1;0;1;2;3;4;-4}
2: x thuộc A giao B
=>\(x=\left\{2;-2\right\}\)
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) ∃x ∈ Q: x2=2;= “Bình phương của một số hữu tỉ là một số khác 2”. Mệnh đề đúng.
c) ∀x ∈ R: x< x+1; = ∃x ∈ R: x≥x+1= “Tồn tại số thực x không nhỏ hơn số ấy cộng với 1”. Mệnh đề này sai.
d) ∃x ∈ R: 3x=x2+1; = ∀x ∈ R: 3x ≠ x2+1= “Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x”
Đây là mệnh đề sai
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x= ta có :
3 =+1
Xem thêm tại: http://loigiaihay.com/bai-7-trang-10-sgk-dai-so-10-c45a4787.html#ixzz45gTdKfVY
Đáp án: C
M là tập hợp các số nguyên chia hết cho 2. N là tập hợp các số nguyên chia hết cho 6. Các số chia hết cho 6 chắc chắn phải chia hết cho 2, ngược lại các số chia hết cho 2 thì chưa chắc chia hết cho 6. Do đó N ⊂ M => M ∩ N = N
=> A sai, C đúng.
P = {1; 2}; Q = {1; 2; 3; 6}. Do đó P ⊂ Q => P ∩ Q = P => B, D sai.