Cho các hàm số f 0 x ,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

14 tháng 5 2016

Điều kiện \(x>0\)

Ta có : \(f\left(x\right)=x^3\ln x\Rightarrow f'\left(x\right)=3x^2\ln x+x^3\frac{1}{x}=x^2\left(3\ln x+1\right)\)

            \(f'\left(x\right)+\frac{1}{x}f\left(x\right)=0\Leftrightarrow x^2\left(3\ln x+1\right)+\frac{1}{x}x^3\ln x=0\)

                                         \(\Leftrightarrow x^2\left(4\ln x+1\right)=0\)

                                         \(\Leftrightarrow x=0\) loại

                               hoặc : \(\Leftrightarrow\ln x=-\frac{1}{4}=\ln e^{-\frac{1}{4}}\)

                                         \(\Leftrightarrow x=e^{-\frac{1}{4}}=\frac{1}{\sqrt[4]{e}}\)                  là nghiệm của phương trình      

27 tháng 6 2018

Chọn A

1 cho \(\int f\left(x\right)dx=F\left(x\right)+C\). Khi đó a#0 ,a,b là hằng số ta có \(\int f\left(ax+b\right)dx\) là 2 gia trị m để hàm số F(x) = \(mx^3+\left(3m+2\right)x^2-4x+3\)là một nguyên hàm của hàm số f(x) = \(3x^2+10x-4\) là 3 họ nguyên hàm của hàm số f(x)= \(\left(x^2-3x\right)\left(x+1\right)\)là 4 nguyên hàm của hàm số f(x) \(x^3-\frac{3}{x^2}+2^x\) 5 cho hàm số f(x) =\(e^{2019x}\) . Nguyên hàm \(\int f\left(x\right)dx\)là 6...
Đọc tiếp

1 cho \(\int f\left(x\right)dx=F\left(x\right)+C\). Khi đó a#0 ,a,b là hằng số ta có \(\int f\left(ax+b\right)dx\)

2 gia trị m để hàm số F(x) = \(mx^3+\left(3m+2\right)x^2-4x+3\)là một nguyên hàm của hàm số f(x) = \(3x^2+10x-4\)

3 họ nguyên hàm của hàm số f(x)= \(\left(x^2-3x\right)\left(x+1\right)\)

4 nguyên hàm của hàm số f(x) \(x^3-\frac{3}{x^2}+2^x\)

5 cho hàm số f(x) =\(e^{2019x}\) . Nguyên hàm \(\int f\left(x\right)dx\)

6 tìm họ nguyên hàm của hàm số f(x) =sin2018x là

7 tìm họ nguyên hàm của hàm số f(x)=\(\frac{x^2-x+1}{x-1}\)

8 cho hàm số f(x)=\(\left(2x+1\right)^3\) có một nguyên hàm F(x) thỏa F\(\left(\frac{1}{2}\right)=4\). Tính P =F\(\left(\frac{3}{2}\right)\)

9 hãy xác định hàm số F (x) = ax^3+bx^2+cx+1. Biết F (x) là một nguyên hàm của hàm số y=f(x) thỏa mãn f(1)=2,f(2=3 và f(3)=4

A F(x)= \(x^3+\frac{1}{2}x^2+x+1\)

B F (x) =\(\frac{1}{3}x^3+x^2+2x+1\)

C F(x)=\(\frac{1}{2}x^2+x+1\)

D F(x)=\(\frac{1}{3}x^3+\frac{1}{2}x^2+x+1\)

10 Cho F (x) là một nguyên hàm của y =\(\left(\frac{x-2}{x^3}\right)\). Nếu F (-1)=3 thì F(x) bằng

3
NV
24 tháng 6 2020

9.

\(f\left(x\right)=F'\left(x\right)=3ax^2+2bx+c\)

\(\left\{{}\begin{matrix}f\left(1\right)=2\\f\left(2\right)=3\\f\left(3\right)=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a.1+2b.1+c=2\\3a.2^2+2b.2+c=3\\3a.3^2+2b.3+c=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a+2b+c=2\\12a+4b+c=3\\27a+6b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=\frac{1}{2}\\c=1\end{matrix}\right.\)

\(\Rightarrow F\left(x\right)=\frac{1}{2}x^2+x+1\)

10.

\(F\left(x\right)=\int\frac{x-2}{x^3}dx=\int\left(\frac{1}{x^2}-\frac{2}{x^3}\right)dx=\int\left(x^{-2}-2x^{-3}\right)dx\)

\(=-1.x^{-1}+x^{-2}+C=-\frac{1}{x}+\frac{1}{x^2}+C\)

\(F\left(-1\right)=3\Leftrightarrow1+1+C=3\Rightarrow C=1\)

\(\Rightarrow F\left(x\right)=-\frac{1}{x}+\frac{1}{x^2}+1\)

NV
24 tháng 6 2020

4.

\(\int\left(x^3-\frac{3}{x^2}+2^x\right)dx=\frac{1}{4}x^4-\frac{3}{x}+\frac{2^x}{ln2}+C\)

5.

\(\int e^{2019x}dx=\frac{1}{2019}\int e^{2019x}d\left(2019x\right)=\frac{1}{2019}e^{2019x}+C\)

6.

\(\int sin2018x.dx=\frac{1}{2018}\int sin2018x.d\left(2018x\right)=-\frac{1}{2018}cos2018x+C\)

7.

\(\int\frac{x^2-x+1}{x-1}dx=\int\left(\frac{x\left(x-1\right)}{x-1}+\frac{1}{x-1}\right)dx=\int\left(x+\frac{1}{x-1}\right)dx=\frac{1}{2}x^2+ln\left|x-1\right|+C\)

8.

\(F\left(x\right)=\int\left(2x+1\right)^3dx=\frac{1}{2}\int\left(2x+1\right)^3d\left(2x+1\right)=\frac{1}{8}\left(2x+1\right)^4+C\)

\(F\left(\frac{1}{2}\right)=4\Leftrightarrow\frac{1}{8}\left(2.\frac{1}{2}+1\right)^4+C=4\Rightarrow C=2\)

\(\Rightarrow F\left(x\right)=\frac{1}{8}\left(2x+1\right)^4+2\Rightarrow F\left(\frac{3}{2}\right)=\frac{1}{8}4^4+2=34\)

NV
11 tháng 4 2019

Câu 1:

\(\int\limits^3_0\left(f'\left(x\right)+1\right)\sqrt{x+1}dx=\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx+\int\limits^3_0\sqrt{x+1}dx\)

\(=\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx+\frac{14}{3}=\frac{302}{15}\Rightarrow\int\limits^1_0f'\left(x\right)\sqrt{x+1}dx=\frac{232}{15}\)

Ta có:

\(I=\int\limits^3_0\frac{f\left(x\right)dx}{\sqrt{x+1}}\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=\frac{dx}{\sqrt{x+1}}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=2\sqrt{x+1}\end{matrix}\right.\)

\(\Rightarrow I=2f\left(x\right)\sqrt{x+1}|^3_0-2\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx\)

\(=4f\left(3\right)-2f\left(0\right)-2.\frac{232}{15}\)

\(=2\left(2f\left(3\right)-f\left(0\right)\right)-\frac{464}{15}=36-\frac{464}{15}=\frac{76}{15}\)

NV
11 tháng 4 2019

Câu 2:

\(I_1=\int\limits^3_1\frac{xf'\left(x\right)}{x+1}dx=0\)

Đặt \(\left\{{}\begin{matrix}u=\frac{x}{x+1}\\dv=f'\left(x\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{\left(x+1\right)^2}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I_1=\frac{xf\left(x\right)}{x+1}|^3_1-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}=\frac{3.3}{3+1}-\frac{1.3}{1+1}-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=\frac{3}{4}-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=0\)

\(\Rightarrow\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=\frac{3}{4}\)

Ta có:

\(I=\int\limits^3_1\frac{f\left(x\right)+lnx}{\left(x+1\right)^2}dx=\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx+\int\limits^3_1\frac{lnx}{\left(x+1\right)^2}dx=\frac{3}{4}+I_2\)

Xét \(I_2=\int\limits^3_1\frac{lnx}{\left(x+1\right)^2}dx\Rightarrow\) đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\frac{1}{\left(x+1\right)^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=\frac{-1}{x+1}\end{matrix}\right.\)

\(\Rightarrow I_2=\frac{-lnx}{x+1}|^3_1+\int\limits^3_1\frac{dx}{x\left(x+1\right)}=-\frac{1}{4}ln3+\int\limits^1_0\left(\frac{1}{x}-\frac{1}{x+1}\right)dx\)

\(=-\frac{1}{4}ln3+ln\left(\frac{x}{x+1}\right)|^3_1=-\frac{1}{4}ln3+ln\frac{3}{4}-ln\frac{1}{2}=\frac{3}{4}ln3-ln2\)

\(\Rightarrow I=\frac{3}{4}+\frac{3}{4}ln3-ln2\)

Câu 1: Cho hàm số \(y=f\left(x\right)\), biết \(f’\left(x\right)=k\left(\frac{\sqrt{m}-m}{m^2}\right)\left(x-k\right)\) ( m,k là các hằng số ). Tìm tấc cả các giá trị nguyên của \(m\) thuộc \(\left[0;2020\right]\) để đồ thị hàm số \(y=f\left(x\right)\) có duy nhất một cực đại tại \(x=k\) \(\forall k\in\left[1;10\right]\). a) 1 b) 2019 c) 2020 d) 0 Câu 2: Cho hàm số \(y=f\left(x\right)\) liên tục trên \(R\). Biết...
Đọc tiếp

Câu 1: Cho hàm số \(y=f\left(x\right)\), biết \(f’\left(x\right)=k\left(\frac{\sqrt{m}-m}{m^2}\right)\left(x-k\right)\) ( m,k là các hằng số ). Tìm tấc cả các giá trị nguyên của \(m\) thuộc \(\left[0;2020\right]\) để đồ thị hàm số \(y=f\left(x\right)\) có duy nhất một cực đại tại \(x=k\) \(\forall k\in\left[1;10\right]\).
a) 1

b) 2019

c) 2020

d) 0

Câu 2: Cho hàm số \(y=f\left(x\right)\) liên tục trên \(R\). Biết \(f‘\left(0\right)=1,f\left(1\right)=0\), GTLN hàm số \(f\left(x\right)\) trên đoạn \(\left[0;1\right]\) bằng \(\frac{4}{27}\) tại điểm \(x=\frac{1}{3}\)\(\int\limits^1_0f”\left(x\right)f’\left(x\right)dx=-\frac{1}{2}\). Hỏi phương trình \(f\left(\sqrt[3]{x}\right)=\sqrt[3]{x}\) có bao nhiêu nghiệm

a) 3

b) 2

c) 1

d) 0

Câu 3: Cho hàm số \(y=f\left(x\right)\)\(f’\left(x\right)=x\left(x-2\right)\left(x^2-x\right)^{11}\). Hỏi hàm số \(y=f\left(\frac{2\sqrt{x-2}}{x-2}\right)\) đồng biến trên khoảng

0