Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
Vì \(a,b,c\) là ba cạnh của tam giác nên :
\(a+b-c,b+c-a,c+a-b>0\)
Đặt \((a+b-c,b+c-a,c+a-b)=(x,y,z)\Rightarrow (a,b,c)=\left(\frac{x+z}{2},\frac{x+y}{2},\frac{y+z}{2}\right)\)
BĐT cần CM tương đương:
\((x+y)(y+z)(x+z)\geq 8xyz\) với \(x,y,z>0\)
Áp dụng BĐT AM-GM ta có:
\((x+y)(y+z)(x+z)\geq 2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8xyz\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c\)
Bài 2)
Để đề bài chặt chẽ phải bổ sung điều kiện \(a,b,c>0\)
\((a^2+b^2+c^2)^2>2(a^4+b^4+c^4) \Leftrightarrow 2(a^2b^2+b^2c^2+c^2a^2) >a^4+b^4+c^4\)
\(\Leftrightarrow 4a^2b^2>(c^2-a^2-b^2)^2\Leftrightarrow (2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)>0\)
\(\Leftrightarrow [(a+b)^2-c^2][c^2-(a-b)^2]>0\)
\(\Leftrightarrow (a+b-c)(a+b+c)(c+b-a)(c+a-b)>0\)
\(\Leftrightarrow (a+b-c)(b+c-a)(c+a-b)>0\). Khi đó xảy ra các TH:
+) Cả ba nhân tử \(a+b-c,b+c-a,c+a-b>0\) đồng nghĩa với \(a,b,c\) là ba cạnh tam giác
+ ) Tồn tại một nhân tử nhỏ hơn $0$ sẽ kéo theo bắt buộc phải có thêm một nhân tử nhỏ hơn $0$ nữa. Giả sử \(\left\{\begin{matrix} a+b-c<0\\ b+c-a<0\end{matrix}\right.\Rightarrow 2b < 0\) (vô lý)
Vậy ta có đpcm
Dùng biến đổi tương đương:
a/ \(a^2+b^2+c^2+d^2+16\ge4a+4b+4c+4d\)
\(\Leftrightarrow a^2-4a+4+b^2-4b+4+c^2-4c+4+d^2-4d+4\ge0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2+\left(d-2\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
Dấu "=" xảy ra khi \(a=b=c=d=2\)
b/ \(a^2+b^2\ge a+b-\frac{1}{2}\)
\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2\ge0\) (luôn đúng)
Dấu "=" khi \(a=b=\frac{1}{2}\)
a)
\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)
\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)
\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)
\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)
Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)
b)
Xét hiệu
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)
\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)
Dấu "=" xảy ra khi $x=y$
c)
Xét hiệu:
\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)
\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)
\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)
\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)
Dấu "=" xảy ra khi \(ad=bc\)
d)
Xét hiệu:
\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)
\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)
\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)
\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
2a)\(a^2+\dfrac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)
\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)
b)Đã cm
c)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu bằng xảy ra khi a=b=1
Áp dụng bất đẳng thức Cô-si ta có :
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge3\sqrt[3]{\frac{1}{a^3b^3c^3}}=\frac{3}{abc}\)
Dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) Hay \(a=b=c\) ( đề cho )
Vậy ta có đpcm : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Ta có:(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2
=>a2x2+a2y2+a2z2+b2x2+b2y2+b2z2+c2x2+
c2y2+c2z2=a2x2+b2y2+c2z2+2axby+2axcz+
2bycz
=>a2y2+a2z2+b2x2+b2z2+c2x2+c2y2-2axby-2axcz-2bycz=0
=>(a2y2-2axby+b2x2)+(a2z2-2axcz+c2x2)+
(b2z2-2bycz+c2y2)=0
=>(ay-bx)2+(az-cx)2+(bz-cy)2=0
Vì (ay-bx)2\(\ge0\);(az-cx)2\(\ge0\);(bz-cy)2\(\ge0\)
nên =>(ay-bx)2+(az-cx)2+(bz-cy)2\(\ge0\)
Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{a}{x}=\dfrac{c}{z}\\\dfrac{b}{y}=\dfrac{c}{z}\end{matrix}\right.\)=>\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)(x;y;z\(\ne0\))
cái chỗ dấu = xảy ra khi... cậu viết rõ hơn đc k? tớ ms vào nên k biết kí hiệu này lắm