K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

a) để phương trình có 2 nghiệm : \(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\Delta'\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\left(m+2\right)^2-\left(m-3\right)\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\6m+7\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{7}{6}\end{matrix}\right.\)

thay \(x_1=2\) vào phương trình ta có :

\(4\left(m-3\right)-4\left(m+2\right)+m+1=0\Leftrightarrow m=19\)

áp dụng hệ thức vi ét ta có : \(x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}=\dfrac{2\left(21\right)}{16}=\dfrac{21}{8}\)

\(\Rightarrow x_2=\dfrac{21}{8}-x_1=\dfrac{21}{8}-2=\dfrac{5}{8}\)

vậy ....................................................................................................

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}\\x_1x_2=\dfrac{m+1}{m-3}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=10\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=10\Leftrightarrow\dfrac{2\left(m+2\right)}{m-3}:\dfrac{m+1}{m-3}=10\)

\(\Leftrightarrow\dfrac{2m+4}{m+1}=10\Leftrightarrow2m+4=10m+10\Leftrightarrow m=\dfrac{-3}{4}\left(L\right)\)

vậy không có m thỏa mãn điều kiện bài toán .

1 tháng 9 2018

câu 2) a) để phương trình có 2 nghiệm cùng dấu \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'\ge0\\p>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\left(m+1\right)^2-\left(m-2\right)\left(m-1\right)\ge0\\\dfrac{m-1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\5m-1\ge0\\\left(m-1\right)\left(m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ge\dfrac{1}{5}\\\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\) vậy \(m>2\)

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m+1\right)}{m-2}\\x_1x_2=\dfrac{m-1}{m-2}\end{matrix}\right.\)

ta có : \(x_1^3+x_2^3=64\Leftrightarrow\left(x_1+x_2\right)^3-3\left(x_1x_2\right)\left(x_1+x_2\right)=64\)

\(\left(\dfrac{2m+2}{2-m}\right)^3+6\left(\dfrac{m-1}{m-2}\right)\left(\dfrac{m+1}{m-2}\right)=64\)

\(\Leftrightarrow\dfrac{\left(-2m-2\right)^3}{\left(m-2\right)^3}+\dfrac{6\left(m-1\right)\left(m+1\right)\left(m-2\right)}{\left(m-2\right)^3}=64\)

\(\Leftrightarrow\dfrac{-8m^3-24m^2-24m-8+6m^2-12m^3-6m+12}{m^2-6m^2+12m-8}=64\)

\(\Leftrightarrow\dfrac{-20m^3-18m^2-30m+4}{m^3-6m^2+12m-8}=64\)

\(\Leftrightarrow84m^3-402m^2+798m-516=0\)

giải nốt nha .

3 tháng 9 2018

Câu 3 : Theo định lý vi - et ta luôn có :

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m^2-4m+4\end{matrix}\right.\)

\(\Rightarrow A=\left|m^2-4m+4-2m\right|=\left|m^2-6m+4\right|=\left|\left(m-3\right)^2-5\right|\ge5\)

Vậy GTNN của A là 5 . Khi và chỉ khi \(\left(m-3\right)^2=0\Leftrightarrow m=3\)

3 tháng 9 2018

Bạn sửa dùm mình dấu > thành < nha !

NV
12 tháng 10 2020

\(S=\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)

\(S=\frac{a^2}{a^2+2ab}+\frac{b^2}{b^2+2bc}+\frac{c^2}{c^2+2ca}\)

\(S\ge\frac{\left(a+b+c\right)^2}{a^2+2ab+b^2+2bc+c^2+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

\(S_{min}=1\) khi \(a=b=c=1\)

GTNN của S hoàn toàn không cần đến điều kiện \(abc=1\), nó luôn bằng 1 với mọi số thực dương a;b;c (nên điều kiện \(abc=1\) là thừa)

NV
12 tháng 10 2020

Do \(x^{2016}+y^{2016}+z^{2016}=1\Rightarrow\left\{{}\begin{matrix}0\le x^{2016}\le1\\0\le y^{2016}\le1\\0\le z^{2016}\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^{2017}\le x^{2016}\\y^{2017}\le y^{2016}\\z^{2017}\le z^{2016}\end{matrix}\right.\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le x^{2016}+y^{2016}+z^{2016}\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le1\)

Đẳng thức xảy ra khi vả chỉ khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị

\(\Rightarrow P=1\)

Gọi \(d=ƯC\left(m^2+n^2;m+n\right)\)

\(\Rightarrow\left(m+n\right)^2-\left(m^2+n^2\right)⋮d\Rightarrow2mn⋮d\)

TH1: \(2⋮d\Rightarrow d_{max}=2\) khi \(m;n\) cùng lẻ

TH2: \(m⋮d\) , mà \(m+n⋮d\Rightarrow n⋮d\)

\(\Rightarrow d=ƯC\left(m;n\right)\Rightarrow d=1\)

Th3: \(n⋮d\) tương tự như trên ta có \(d=1\)

Vậy ước chung lớn nhất A; B bằng 2 khi m; n cùng lẻ

Câu 1: Xác định m và n để phương trình (ần x): x2 + mx + n = 0 có hai nghiệm là m và n. Câu 2: Chứng tỏ phương trình bậc hai (ần x): x2 + mx = m2+ m + 1 luôn có hai nghiệm trái dấu mọi m. Câu 3: Tìm k để phương trình bậc hai (ẩn x): x2 – (k + 2)x + k – 1 = 0 có hai nghiệm đối nhau. Câu 4: \(\sqrt{2x-2+2\sqrt{2x-3}}\) +\(\sqrt{2x+13+8\sqrt{2x-3}}\) =7 giải phương trình trên. Câu 5: Chứng minh rằng nếu a + b ≥ 2...
Đọc tiếp

Câu 1: Xác định m và n để phương trình (ần x): x2 + mx + n = 0 có hai nghiệm là m và n.

Câu 2: Chứng tỏ phương trình bậc hai (ần x): x2 + mx = m2+ m + 1 luôn có hai nghiệm trái dấu mọi m.

Câu 3: Tìm k để phương trình bậc hai (ẩn x): x2 – (k + 2)x + k – 1 = 0 có hai nghiệm đối nhau.

Câu 4: \(\sqrt{2x-2+2\sqrt{2x-3}}\) +\(\sqrt{2x+13+8\sqrt{2x-3}}\) =7 giải phương trình trên.

Câu 5: Chứng minh rằng nếu a + b ≥ 2 thì ít nhất một trong hai phương trình sau có nghiệm:
x2 + 2ax + b = 0 ; x2 + 2bx + a = 0 .

Câu 6: Cho ba phương trình: ax2 + 2bx + c = 0; bx2 + 2cx + a = 0; cx2 + 2ax + b = 0 ( a, b, c ≠0 ).
Chứng minh rằng ít nhất một trong ba phương trình trên phải có nghiệm.

Câu 7: Cho (x; y) là nghiệm của phương trình x2 + 3y2+ 2xy – 10x – 14y + 18 = 0. Tìm GTLN và GTNN của biểu thức S = x + y.
Câu 8: Cho phương trình bậc hai x2 + ax + b = 0. Xác định a và b để phương trình có hai nghiệm là a và b.

0
6 tháng 6 2018
https://i.imgur.com/Uhbfb24.jpg
6 tháng 6 2018

mơn