K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2015

a)aaaaa=a*111111=a*15873*7(chia hết cho 7)

b)abcabc=abc*1001=abc*91*11(chia hết cho 11)

c)aaa=a*111=a*3*37(chia hết cho 37)

d)ab+ab=10a+b+10a+b=20a+b(không có dấu hiệu nào chia hết cho 11, chứng tỏ sai đề!)

3 tháng 10 2019

Ta có

 \(A=n^2+n+2n+1\) 

\(A=n\left(n+1\right)+2n+1\) 

ta thấy\(n\left(n+1\right)\) và \(2n\)đề chia hết cho 2 nên \(A=n\left(n+1\right)+2n+1\)ko chia hết cho 2

Vậy \(A=n^2+3n+1\) ko chia hết cho 2

      

2 tháng 5 2017

 c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)

2 tháng 5 2017

S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)

  =780+54(5+52+53+54)+...........+52008(5+52+53+54)

  =65*12 + 54*65*12 + .......... + 52008*65*12

  =65*12(1+54+...+52008) chia hết cho 65

=> S chia hết cho 65

23 tháng 11 2020

a,xét n chẵn hiển nhiên A ko chia hết cho 2

n lẻ thì n^2 lẻ n lẻ

->A lẻ -> A ko chia hết cho 2

b,n^2 có tận cùng là:0,1,4,5,6,9

->n^2+n có tận cùng:0,2,8

->n^2+n+1 có tận cùng:1,3,9  ko chia hết cho 5

11 tháng 10 2016

chan qua a!

ai kb voi mk ko

chan qua !

chuc bn hoc gioi!

nhae

25 tháng 7 2018

\(1;a,942^{60}-351^{37}\)

\(=\left(942^4\right)^{15}-\left(....1\right)\)

\(=\left(....6\right)^{15}-\left(...1\right)\)

\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)

\(b,99^5-98^4+97^3-96^2\)

\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)

\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)

\(2;5n-n=4n⋮4\)

25 tháng 7 2018

chả hiểu j

2 tháng 9 2017

a)Vì 105 chia hết cho 5 và 5 chia hết cho 5 nên 105 + 5 chia hết cho 5. 

Ta có: 5 chia 3 dư 2, 105 chia 3 dư 1 ( vì có tổng các chữ số là 1 ) nên 105 +  5 chia hết cho 3.

b) Vì 1050 chia hết cho 2 và 44 chia hết cho 2 nên 1050 + 44 chia hết cho 2.

Vì 44 chia 9 dư 8 và 1050 chia 9 dư 1 ( vì có tổng các chữ số bằng 1 ) nên 1050+44 chia hết cho 9.

c) n x ( n + 1 ) x ( n + 5 ).

Nếu n chia hết cho 3 thì tích trên chia hết cho 3.

Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => tích trên chia hết cho 3.

Nếu n chia 3 dư 1 thì n + 5 chia hết cho 3=> tích trên chia hết cho 3.

Vậy ta có n x ( n + 1 ) x ( n + 5 ) luôn chia hết cho 3 với mọi n thuộc N.

2 tháng 9 2017

105+5=100005

số trên có tận cùng là 5 nên chia hết cho 5

có tổng các chữ số là 6 nên chia hết cho 3

còn lại chịu tui học dốt lắm!!!

1 tháng 12 2016

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

1 tháng 12 2016

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)

12 tháng 12 2017

Nếu n=3k (k thuộc N) thì n.(n+10).(n+2) chia hết cho 3

Nếu n=3k+1 (k thuộc N) thì n+2 = 3k+1+2 = 3k+3 = 3.(k+1) chia hết cho 3 => n.(n+10).(n+2) chia hết cho 3

Nếu n=3k+2 (k thuộc N) thì n+10 = 3k+2+10 = 3k+12 = 3.(k+4) chia hết cho 3 => n.(n+10).(n+2) chia hết cho 3

Vậy n là số tự nhiên thì n.(n+10).(n+2) chia hết cho 3

k mk nha

12 tháng 12 2017

đem chia n cho 3 xảy ra 3 khả năng về số dư : dư 0 hoặc dư 1 hoặc dư 2

+) nếu n chia cho 3 dư 0 => n chia hết cho 3 

khi đó n * ( n + 10 ) * ( n + 2 ) chia hết cho 3

+) nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N )

khi đó n + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3

=> n * ( n + 10 ) * ( n + 2 ) chia hết cho 3

+) nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N )

khi đó n + 10 = 3k + 2 + 10 = 3k + 12 = 3 ( k + 4 ) chia hết cho 3

=> n * ( n + 10 ) * ( n + 2 ) chia hết cho 3

vậy n * ( n + 10 ) * ( n + 2 ) chia hết cho 3

chúc bạn học tốt ^^