Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. goi UCLN ( n + 1; 2n + 3 ) la d ( d thuoc N ), ta co:
*n + 1 chia het cho d
*2n + 3 chia hết cho d
suy ra:
*( n + 1 ) x 2 chia het cho d
*2n + 3 chia hết cho d
suy ra:
*2n + 2 chia hết cho d
*2n + 3 chia hết cho d
suy ra:
*( 2n + 3 ) - (2n + 2 ) chia het cho d
suy ra:
1 chia hết cho d, vì d thuộc N suy ra: d=1
suy ra : UCLN( n + 1; 2n + 3 ) = 1
suy ra : n + 1 trên 2n + 3 toi gian
các câu sau cứ thế mà lm...............
Chứng minh từng cái 1 bạn nhé chứ không phải chứng minh tất đâu
Gọi d là ƯCLN ( n + 1 ; 2n + 3 )
=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )
=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d
=> 1 ⋮ d => d = + 1
Vì ƯCLN ( n + 1 ; 2n + 3 ) = 1 nên \(\frac{n+1}{2n+3}\) là p/s tối giản
Các câu khác làm tương tự
a)
\(\frac{n+1}{n+2}=\frac{n+2-1}{n+2}=\frac{n+2}{n+2}-\frac{1}{n+2}\\\)
vì 1\(⋮\) n+2=>n+2\(\in\) Ư (1)
n+2=1
n=1-2-1
n+2=-1
n=-1-2=-3
b ) Gọi d là ƯCLN(4n + 1; 6n + 1) Nên ta có :
4n + 1 ⋮ d và 6n + 1 ⋮ d
<=> 3(4n + 1) ⋮ d và 2(6n + 1) ⋮ d
<=> 12n + 3 ⋮ d và 12n + 2 ⋮ d
=> (12n + 3) - (12n + 2) ⋮ d
=> 1 ⋮ d => d = 1
=> \(\frac{4n+1}{6n+1}\) là phân số tối giản (đpcm)
a ) Gọi d là ƯCLN(3n - 2; 4n - 3) Nên ta có :
3n - 2 ⋮ d và 4n - 3 ⋮ d
<=> 4(3n - 2) ⋮ d và 3(4n - 3) ⋮ d
<=> 12n - 8 ⋮ d và 12n - 9 ⋮ d
=> (12n - 8) - (12n - 9) ⋮ d
=> 1 ⋮ d => d = 1
=> \(\frac{3n-2}{4n-3}\)là phân số tối giản (đpcm)