Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)\(\left(x-1\right)^2+2=\left(x-2\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2-\left(x-1\right)^2=2\)
\(\Leftrightarrow\left(x-2-x+1\right)\left(x-2+x-1\right)=2\)
\(\Leftrightarrow-1\left(2x-3\right)=2\)
\(\Leftrightarrow2x-3=-2\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy tập nghiệm của pt 1 là \(S=\left\{\frac{1}{2}\right\}\)
+)\(2x^3-x^2+2x-1=0\)
\(\Leftrightarrow x^2\left(2x-1\right)+\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x^2=-1\left(\text{loại}\right)\end{cases}}}\)
Vậy tập nghiệm của pt 2 là \(S=\left\{\frac{1}{2}\right\}\)
Xét thấy 2 pt có tập nghiệm như nhau nên 2 pt này tương đương
*\(\left(x-1\right)^2+2=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-2x+1+2=x^2-4x+4\)
\(\Leftrightarrow x^2-x^2-2x+4x=-1-2+4\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm S= { 1/2 } (1)
*\(2x^3-x^2+2x-1=0\)
\(\Leftrightarrow x^2\left(2x-1\right)+\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow2x-1=0\) ( vì x2 + 1 luôn khác 0 với mọi x )
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm là S = {1/2} (2)
Từ (1) và (2) suy ra : 2 phương trình đã cho tương đương nhau
a) Tương đương b) Không tương đương