K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

a) Lấy (1)+(2)+(3) là tìm được z rồi thế z vào tìm x, y
b) Lấy (1) + (2) - (3) là tìm được y

17 tháng 9 2021

\(a)\hept{\begin{cases}x-2y+z=12\\2x-y+3z=18\\-3x+3y+2z=-9\end{cases}\Leftrightarrow\hept{\begin{cases}x-2y+z=12\\3y+z=-6\\6z=21\end{cases}}}\)

\(\text{Đáp số: }(x;y;z)=(\frac{16}{3};-\frac{19}{6};\frac{7}{2})\)

\(b)\hept{\begin{cases}x+y+z=7\\3x-2y+2z=5\\4x-y+3z=10\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=7\\-5y-z=16\\0y+0z=-2\end{cases}}\)

\(\text{ Hệ phương trình vô nghiệm.}\)

21 tháng 12 2016

Gọi độ dài mỗi cạnh của tam giác lần lượt là x;y;z

Theo bài ra ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và x+y+z=72

theo tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{72}{12}=6\)

=> x=18

y=24

z=30

21 tháng 12 2016

Bài 21:

Gọi độ dài 3 cạnh của tam giác đó là: a, b, c ( a, b, c > 0 )

Theo đề bài, ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a + b + c = 72

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{72}{12}=6\)

Do đó:

\(\frac{a}{3}=6=>a=6\cdot3=18\)

\(\frac{b}{4}=6=>b=6\cdot4=24\)

\(\frac{c}{5}=6=>c=6\cdot5=30\)

Vậy độ dài 3 cạnh của tam giác đó theo thứ tự là: 18; 24; 30 ( cm ) thỏa mãn yêu cầu đề bài

Bài 22:

Gọi số học sinh 3 lớp 7A, 7B, 7C theo thứ tự là: a, b, c ( a, b, c thuộc N* )

Theo đề bài, ta có:

\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\) và c - a = 16

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{c-a}{6-4}=\frac{16}{2}=8\)

Do đó:

\(\frac{a}{4}=8=>a=8\cdot4=32\)

\(\frac{b}{5}=8=>b=8\cdot5=40\)

\(\frac{c}{6}=8=>c=8\cdot6=48\)

Vậy số học sinh 3 lớp 7A, 7B, 7C theo thứ tự là: 32; 40; 48 ( học sinh ) thỏa mãn yêu cầu đề bài

 

5 tháng 5 2016

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{50}\)

\(A< 2-\frac{1}{50}< 2\)

Vậy A < 2

5 tháng 5 2016

\(\Rightarrow A< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2-\frac{1}{50}< 2\) hay \(A< 2\)