\(B=\frac{1}{19}+\frac{9}{19\times29}+\frac{9}{29\times39}+.......+\frac{9}{1999\times2009}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

\(B=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)

\(=9\left(\frac{1}{9.19}+\frac{1}{19.29}+...+\frac{1}{1999.2009}\right)=\frac{9}{10}\left(\frac{10}{9.19}+\frac{10}{19.29}+...+\frac{10}{1999.2009}\right)\)

\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{19}+\frac{1}{19}-\frac{1}{29}+...+\frac{1}{1999}-\frac{1}{2009}\right)=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2009}\right)=\frac{9}{10}\cdot\frac{2000}{18081}=\frac{200}{2009}\)

1 tháng 9 2018

Ta có: \(B=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)

\(B=9\left(\frac{1}{9.19}+\frac{1}{19.29}+...+\frac{1}{1999.2009}\right)\)

\(B=\frac{9}{10}\left(\frac{10}{9.19}+\frac{10}{19.29}+...+\frac{10}{1999.2009}\right)\)

\(B=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{19}+\frac{1}{19}-\frac{1}{29}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)

\(B=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2009}\right)\)

\(B=\frac{9}{10}.\frac{2000}{18081}\)

\(B=\frac{200}{2009}\)

Vậy \(B=\frac{200}{2009}\)

17 tháng 2 2017

\(A=\frac{1}{19}+\frac{9}{19.29}+...+\frac{9}{1999.2009}\)

\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)

\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2009}\right)\)

đến đay bn tự tính nha

17 tháng 2 2017

cảm ơn nhg mình lm đc rùi

\(\frac{-1}{2009}\)

2 tháng 2 2017

ta có 1/19 x 29  + 1/29x39+.........+1/1999x2009

=1/19 - 1/29 . 1/29 - 1/39 ........  1/1999-1/2009

=1/2009-1/19

=-1990/38171

=>1/19+-1990/38171

=1/2009

K MK MK K LAI

5 tháng 9 2018

\(B=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)

\(=\frac{9}{9.19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)

\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{19}+\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)

\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2009}\right)\)

\(=\frac{200}{2009}\)

5 tháng 9 2018

Gọi \(B=\frac{9}{19}+A\)

\(A=\frac{9}{19\cdot29}+\frac{9}{29\cdot39}+...+\frac{9}{1999\cdot2009}\)

\(\frac{A}{9}=\frac{1}{19\cdot29}+\frac{1}{29\cdot39}+...+\frac{1}{1999\cdot2009}\)

\(\frac{A\cdot10}{9}=\frac{10}{19+29}+\frac{10}{29\cdot39}+...+\frac{10}{1999\cdot2009}\)

\(\frac{A\cdot10}{9}=\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\)

\(\frac{A\cdot10}{9}=\frac{1}{19}-\frac{1}{2009}\)

\(A=\frac{1791}{38171}\)

\(\Rightarrow B=\frac{1}{19}+\frac{1791}{38171}\)

\(\Rightarrow B=\frac{200}{2009}\)

1 tháng 1 2016

\(\frac{2000}{2009}\)

1 tháng 1 2016

\(\frac{200}{2009}\)tính lộn

25 tháng 2 2017

Ta có: \(A=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)

\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}\left(\frac{10}{19.29}+\frac{10}{29.39}+...+\frac{10}{1999.2009}\right)\)

\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)

\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2009}\right)\)

\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}.\frac{1990}{38171}\)

\(\Rightarrow A=\frac{1}{19}+\frac{1791}{38171}\)

\(\Rightarrow A=\frac{200}{2009}\)

Vậy \(A=\frac{200}{2009}.\)

\(A=-\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}\)

\(=\frac{-6.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}\)

\(=-\frac{6}{9}=-\frac{2}{3}\)