Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Tọa độ giao điểm của (P) và (d) là:
\(\frac{x^2}{4}=-\frac{x}{2}+2\Rightarrow x^2=-2x+8\Rightarrow x^2+2x-8=0\Rightarrow\orbr{\begin{cases}x=-4\Rightarrow y=4\\x=2\Rightarrow y=1\end{cases}}\)
Vậy có 2 giao điểm \(\orbr{\begin{cases}A\left(-4;4\right)\\A\left(2;1\right)\end{cases}}\)
a)pt hoành độ
2x^2-a^2=ax^2
=>x^2(2-a)-a^2=0
đenta=4a^2(2-a)>0
giải ra
b)áp dụng viét với pt x^2(2-a)-a^2=0
a: Khi m=1 thì \(y=x-\dfrac{1}{2}+1+1=x+\dfrac{3}{2}\)
PTHĐGĐ là: \(\dfrac{1}{2}x^2-x-\dfrac{3}{2}=0\)
\(\Leftrightarrow x^2-2x-3=0\)
=>x=3 hoặc x=-1
Khi x=3 thì y=9/2
Khi x=-1 thì y=9
b: PTHĐGĐ là:
\(\dfrac{1}{2}x^2-mx+\dfrac{1}{2}m^2-m-1=0\)
\(\Leftrightarrow x^2-2mx+m^2-2m-2=0\)
\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-2m-2\right)\)
\(=4m^2-4m^2+8m+8=8m+8\)
Để phương trình có hai nghiệm phân biệt thì 8m+8>0
hay m>-1
Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
\(\Leftrightarrow\sqrt{4m^2-4\left(m^2-2m-2\right)}=2\)
\(\Leftrightarrow\sqrt{4m^2-4m^2+8m+8}=2\)
=>8m+8=4
=>8m=-4
hay m=-1/2
a) Phương trình hoành độ giao điểm của (d) và (P) là
\(x^2=\left(m-1\right)x+4\Leftrightarrow x^2-\left(m-1\right)x-4=0\)
Ta có \(\Delta=\left(m-1\right)^2-4.\left(-4\right)=\left(m-1\right)^2+16\)
Vì \(\left(m-1\right)^2\ge0\forall m\Rightarrow\left(m-1\right)^2+16>0\forall m\)hay \(\Delta>0\)
Suy ra phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi giá trị của m
Do đó đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m
(hoặc lập luận cho ac=1.(-4)<0 nên có 2 nghiệm phân biệt ...)
b) Theo chứng minh ý a thì phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt , áp dụng hệ thức Vi-ét:
\(\hept{\begin{cases}x_1+x_2=m-1\\x_1x_2=-4\end{cases}}\)
Khi đó : \(y_1+y_2=y_1.y_2\Leftrightarrow x_1^2+x_2^2=x_1^2.x_2^2\)( có cái này là do parabol P y=x^2)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2\right)^2\Leftrightarrow\left(m-1\right)^2-2.\left(-4\right)=\left(-4\right)^2\)
\(\Leftrightarrow\left(m-1\right)^2=8\Leftrightarrow\orbr{\begin{cases}m-1=2\sqrt{2}\\m-1=-2\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}+1\\m=1-2\sqrt{2}\end{cases}}\)
Vậy...........................
a/
hoành độ giao điểm của (d) và ( p ) là nghiệm của phương trình
\(x^2-\left(m-1\right)x-4=0\)
den ta = \(\left(m-1\right)^2+16>0\forall m\)
=> phương trình luôn có 2 nghiệm phân biệt với mọi m
b/
vì \(y_1,y_2\) là tung độ giao điểm của (d ) và ( p )
=> \(y_1=x_1^2\)
\(y_2=x_2^2\)
theo vi - ét có \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-4\end{cases}}\)
ta có \(y_1+y_2=y_1.y_2\)
<=> \(x_1^2+x_2^2=x_1^2x_2^2\)
<=> \(\left(x_2+x_{ }_1\right)^2-2x_1x_2-x_1^2.x_2^2=0\)
<=> \(\left(m-1\right)^2-2.\left(-4\right)-\left(-4\right)^2=0\)
<=> \(m^2-2m+1+8-16=0\)
<=> \(m^2-2m-7=0\)
<=>\(\left(m-1\right)^2-8=0\)
<=> \(\left(m-1\right)^2=8\)
<=> \(m-1=2\sqrt{2}\left(h\right)m-1=-2\sqrt{2}\)
<=> \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)
vậy \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)
CHÚC BẠN HỌC TỐT
a: Thay x=-4 và y=-4 vào (P), ta được:
16a=-4
=>a=-1/4
=>y=-1/4x^2
b: PTHĐGĐ là:
-1/4x^2=1/4x-3
=>x^2=-x+12
=>x^2+x-12=0
=>(x+4)(x-3)=0
=>x=3 hoặc x=-4
=>y=-1/4*(-4)^2=4 hoặc y=-1/4*3^2=-9/4