Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(27x^2+a\right):\left(3x+2\right)\) được thương là 9x -16 và dư a + 12
Để \(\left(27x^2+a\right)⋮\left(3x+2\right)\) thì số dư phải bằng 0
=> a + 12 = 0
=> a = -12
Bài b và c tham khảo cách làm tương tự ở đây
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
a: Ta có: \(A=-x^2+2x+5\)
\(=-\left(x^2-2x-5\right)\)
\(=-\left(x^2-2x+1-6\right)\)
\(=-\left(x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi x=1
b: Ta có: \(B=-x^2-8x+10\)
\(=-\left(x^2+8x-10\right)\)
\(=-\left(x^2+8x+16-26\right)\)
\(=-\left(x+4\right)^2+26\le26\forall x\)
Dấu '=' xảy ra khi x=-4
c: Ta có: \(C=-3x^2+12x+8\)
\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)
\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)
\(=-3\left(x-2\right)^2+20\le20\forall x\)
Dấu '=' xảy ra khi x=2
d: Ta có: \(D=-5x^2+9x-3\)
\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)
\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)
\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)
e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)
\(=4x+24-x^2-6x\)
\(=-x^2-2x+24\)
\(=-\left(x^2+2x-24\right)\)
\(=-\left(x^2+2x+1-25\right)\)
\(=-\left(x+1\right)^2+25\le25\forall x\)
Dấu '=' xảy ra khi x=-1
f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)
\(=8x-6x^2+20-15x\)
\(=-6x^2-7x+20\)
\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)
\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)
\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)
a) \(\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)\)
\(=a^2+2ab+b^2-\left(a^2-b^2\right)\)\(=\left(a^2-a^2\right)+\left(b^2+b^2\right)+2ab\)\(=2b^2+2ab\)\(=2b\left(a+b\right)\)=> đpcm
b) \(\left(x-y\right)^2+2xy\)
\(=x^2-2xy+y^2+2xy\)\(=x^2+y^2\) => đpcm
c) \(\left(x+y\right)^2-2xy\)
\(=x^2+2xy+y^2-2xy\)\(=x^2+y^2\) => đpcm
Bài 1:
a: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
b: \(\Leftrightarrow n^2-n-n+1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
a: \(\Leftrightarrow\left(x-2010\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2010\\x=-\dfrac{1}{7}\end{matrix}\right.\)
b: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
a)7x(x-2010)+(x-2010)=-
(x-2010)(7x+1)=0
x=2010 hoặc x=\(-\dfrac{1}{7}\)
Vậy \(x\in\left\{2010;-\dfrac{1}{7}\right\}\)
1) \(2x^2-5x+a=x\left(2x+1\right)-3\left(2x+1\right)+3+a=\left(2x+1\right)\left(x-3\right)+3+a⋮\left(2x+1\right)\)
\(\Rightarrow3+a=0\Rightarrow a=-3\)
2) \(x^4-9x^3+21x^2+x+a=x^2\left(x^2-x-2\right)-8x\left(x^2-x-2\right)+15\left(x^2-x-2\right)+30+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+30+a⋮\left(x^2-x-2\right)\)
\(\Rightarrow30+a=0\Rightarrow a=-30\)