\(A=\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}\right):\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{x+\sqrt{x}+1+\sqrt{x}+2+\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{1}\)

\(=\dfrac{x+3\sqrt{x}+2}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}+1}{1}=\left(\sqrt{x}+1\right)^2\)

b: Để 1/A là số tự nhiên thì \(\sqrt{x}+1\) là số tự nhiên

hay \(x=k^2\left(k\in N;k\ne1\right)\)

27 tháng 10 2017

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)

\(=\frac{x+1+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}\)

=x-2 căn x +1/x-1

=(căn x-1)^2/(căn x-1)(căn x+1)

=căn x-1/căn x+1

b, Để căn x-1/căn x+1

=> căn x-1/căn x+1

=căn +1-2/căn x+1

=(căn x+1/căn x+1)+(-2/căn x+1)

=1+  (-2)/căn +1

=>căn x+1 thuộc Ư(-2)={+-1;+-2}

=> x=0 (loại)

=> x vô lý loại

=> x=1

=> x vô lý loại

Vậy để P nghiệm nguyên =>x=4

27 tháng 10 2017

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\frac{3\left(\sqrt{x}-1\right)}{x-1}-\frac{6\sqrt{x}-4}{x-1}\)

\(P=\frac{x+\sqrt{x}}{x-1}+\frac{3\sqrt{x}-3}{x-1}-\frac{6\sqrt{x}-4}{x-1}\)

\(P=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}\)

\(P=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b)  Theo câu a) \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}\) với \(x\ge0;x\ne1\)

có \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

vì \(1\in Z\)nên để \(P\)nhận giá trị nguyên thì \(\frac{2}{\sqrt{x}+1}\)nhận giá trị nguyên

vì \(x\in Z\)nên \(\sqrt{x}\)có thể là số nguyên hoặc số vô tỉ

- nếu \(\sqrt{x}\)là số vô tỉ thì \(\frac{2}{\sqrt{x}+1}\)ko nhận giá trị nguyên   ( Trường hợp này ko xảy ra)

- nếu \(\sqrt{x}\)là số nguyên thì \(\sqrt{x}+1\)nhận giá trị nguyên

để \(\frac{2}{\sqrt{x}+1}\)nhận giá trị nguyên thì \(2⋮\sqrt{x}+1\Leftrightarrow\sqrt{x}+1\inƯ_{\left(2\right)}\Leftrightarrow\sqrt{x}+1\in\left\{-+1;-+2\right\}\)

vì \(\sqrt{x}+1\ge1\forall x\ge0\) nên

\(\sqrt{x}+1\in\left\{1;2\right\}\)

\(\sqrt{x}+1=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

\(\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

kết hợp với điều kiện \(x\ge0;x\ne1\)và \(x\in Z\)

Ta có \(x=0\)thì \(P\)nhận giá trị nguyên

a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)

\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)

22 tháng 12 2017

\(A=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)  \(ĐKXĐ:x\ge0;x\ne1;x\ne4\)

\(A=\left[\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}\right]:\left[\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}-4}{x-1}\right]\)

\(A=\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\left[\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

vậy \(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

b)theo bài ra: \(A=\frac{1}{\sqrt{x}}\)

\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{1}{\sqrt{x}}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right).\sqrt{x}=\sqrt{x}+2\)

\(\Leftrightarrow x-\sqrt{x}-\sqrt{x}-2=0\)

\(\Leftrightarrow x-2\sqrt{x}-2=0\)

\(\Leftrightarrow x-2\sqrt{x}+1-3=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2-\left(\sqrt{3}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1-\sqrt{3}=0\\\sqrt{x}-1+\sqrt{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\sqrt{3}+1\\\sqrt{x}=1-\sqrt{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\left(\sqrt{3}+1\right)^2\\x=\left(1-\sqrt{3}\right)^2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3+2\sqrt{3}+1\\x=3-2\sqrt{3}+1\end{cases}}\)

vậy......

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)