\(A=\frac{^{3^2}}{1\cdot4}+\frac{3^2}{4\cdot7}+\frac{3^2}{7\cdot10}+...+\frac{3^2}{97\cdot100}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

1/3.A=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\)

=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{97}-\frac{1}{100}\)

=\(1-\frac{1}{100}\)

=\(\frac{99}{100}\)

=>A=\(\frac{99}{100}:\frac{1}{3}\)

=\(\frac{297}{100}\)

22 tháng 9 2016

\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=3.\left(1-\frac{1}{100}\right)\)

\(A=3.\frac{99}{100}=\frac{297}{100}\)

Các bạn chọn đúng cho mình nhé!

19 tháng 5 2017

\(A=\frac{2}{3}\left[\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right]\)

\(A=\frac{2}{3}\left[\left[\frac{1}{1}-\frac{1}{4}\right]+\left[\frac{1}{4}-\frac{1}{7}\right]+...+\left[\frac{1}{97}-\frac{1}{100}\right]\right]\)

\(A=\frac{2}{3}\left[\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right]\)

\(A=\frac{2}{3}\left[1-\frac{1}{100}\right]=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

AI THẤY ĐÚNG ỦNG HỘ MIK NHÉ

19 tháng 5 2017
Đào Trong Luân tra loi dung qua. Cho mink kb nha.
30 tháng 4 2017

A = \(\frac{3^2}{1\cdot4}+\frac{3^2}{4\cdot7}+\frac{3^2}{7\cdot10}+\frac{3^2}{10\cdot13}+\frac{3^2}{13\cdot16}+...+\frac{3^2}{97\cdot100}\)

A : 3 = \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}+...+\frac{3}{97\cdot100}\)

A : 3 = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{97}-\frac{1}{100}\)

A : 3 = \(\frac{1}{1}-\frac{1}{100}\)

A : 3 = \(\frac{99}{100}\)

A      = \(\frac{297}{100}\)

13 tháng 12 2018

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+..........+\frac{2}{97.100}=\frac{3}{2}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........-\frac{1}{100}\right)\)

\(=\frac{3}{2}\times\frac{99}{100}=\frac{297}{200}\)

13 tháng 12 2018

2/3( giong cai tren nha)

=2/3.99/100=198/300 nha

28 tháng 1 2017

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{100}\right)=\frac{1}{3}\left(\frac{99}{100}\right)=\frac{33}{100}\)

28 tháng 1 2017

33/100 nha ban that do

27 tháng 7 2016

\(A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)

\(A=1-\frac{1}{16}=\frac{15}{16}\)

27 tháng 7 2016

\(\frac{13}{16}\)

28 tháng 6 2017

CÂU 1 = -59/111

 CÂU 2 = 11/63

     

28 tháng 6 2017

cảm ơn kết quả thì mik b òi nhưng mik cần cách làm

24 tháng 4 2019

Rút gọn các vế đi bạn

24 tháng 4 2019

Tách phần lử trên ra sao cho có thể rút gọn với phần ơn dưới

17 tháng 5 2018

\(^{\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}+\frac{3}{43\cdot46}}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{10}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(1-\frac{1}{46}=\frac{45}{46}\)

Vì \(1-\frac{1}{46}< 1\)nên \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}+\frac{3}{43\cdot46}< 1\)

Chúc bạn học tốt

17 tháng 5 2018

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(S=1-\frac{1}{43}\)

\(S=\frac{42}{43}< 1\)

13 tháng 7 2017

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+....+\frac{1}{97.100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1}{3}\cdot\left(1-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1}{3}\cdot\frac{99}{100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{33}{100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow x=\frac{0,33\times100}{0,33}=100\)