Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(A=\frac{10^{2010}+1}{10^{2011}+1}\)
\(\Rightarrow10A=\frac{10^{2011}+10}{10^{2011}+1}=\frac{\left(10^{2011}+1\right)+9}{10^{2011}+1}=1+\frac{9}{10^{2011}+1}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}\)
\(\Rightarrow10B=\frac{10^{2012}+10}{10^{2012}+1}=\frac{\left(10^{2012}+1\right)+9}{10^{2012}+1}=1+\frac{9}{10^{2012}+1}\)
Vì \(\frac{9}{10^{2011}+1}>\frac{9}{10^{2012}+1}\)nên \(10A>10B\)
\(\Rightarrow A>B\)
Vậy : \(A>B\)
b) Ta có :
\(\left(\frac{-1}{2}\right)^{11}=\frac{-1^{11}}{2^{11}}=\frac{-1}{2^{11}}\)
\(\left(\frac{-1}{2}\right)^{13}=\frac{-1^{13}}{2^{13}}=\frac{-1}{2^{13}}\)
Vì \(\frac{-1}{2^{11}}>\frac{-1}{2^{13}}\)nên \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)
Vậy : \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+10}{10^{2012}+10}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10\cdot\left(10^{2010}+1\right)}{10\cdot\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)
Vậy : B < A
Vì \(\frac{10^{2011}+1}{10^{2012}+1}< 1\)
=> \(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}=\frac{10^{2011}+10}{10^{2012}+10}=\frac{10\left(10^{2010}+1\right)}{10\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)
Vậy A > B
so sánh : cho A\(\frac{2010^{2011}+1}{2010^{2012}+1}\)
cho B =\(\frac{2010^{2010}+1}{2010^{2011}+1}\)
Ta có:
\(A=\frac{2010^{2011}+1}{2010^{2012}+1}\)
\(2010A=\frac{2010^{2012}+2010}{2010^{2012}+1}\)
\(2010A=1+\frac{2009}{2010^{2012}+1}\)
Lại có:
\(B=\frac{2010^{2010}+1}{2010^{2011}+1}\)
\(2010B=\frac{2010^{2011}+2010}{2010^{2011}+1}\)
\(2010B=1+\frac{2009}{2010^{2011}+1}\)
Vì \(1+\frac{2009}{2010^{2012}+1}< 1+\frac{2009}{2010^{2011}+1}\)
nên 2010A < 2010B
hay A < B
Vậy A < B
A=\(\frac{-199}{10^{2011}}\)
B=\(\frac{-109}{10^{2011}}\)
Dễ dàng so sánh được A<B
\(1-A=1-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010^{2012}+1}{2010^{2012}+1}-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010}{2010^{2012}+1}\)
\(1-B=1-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010^{2011}+1}{2010^{2011}+1}-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010}{2010^{2011}+1}\)
Do \(\frac{2010}{2010^{2012}+1}<\frac{2010}{2010^{2011}+1}\)nên \(A>B\)
Do 20102011+1<20102012+1=>A<1
Tương tự với B;B<1
Theo đề bài ta có:
\(A=\frac{2010^{2011}+1}{2010^{2012}+1}<\frac{2010^{2011}+1+2009}{2010^{2012}+1+2009}=\frac{2010^{2011}+2010}{2010^{2012}+2010}=\frac{2010.\left(1+2010^{2010}\right)}{2010.\left(1+2010^{2011}\right)}=\frac{2010^{2010}+1}{2010^{2011}+1}=B\)(*)
Từ (*)=> A<B
\(A=\frac{2010^{10}-1}{2010^{11}-1}<\frac{2010^{10}-1}{2010^{11}-1}+1=\frac{2010^{10}+1}{2011^{10}+1}=B\)
Suy ra: A<B