\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2106}\)

\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)

\(A=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)

\(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2014.2016}=\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1007.1008}\right)\)

=> \(B=\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{1008}\right)=\frac{1}{4}.\frac{1007}{1008}\)

=> \(B=\frac{1007}{4032}\)

7 tháng 4 2017

Lâm đi là: 35 phút +2 giờ 20phút =2 giờ 55 phút

7 tháng 4 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(A=1-\frac{1}{2017}\)

\(A=\frac{2016}{2017}\)

14 tháng 8 2016

dễ mà bạn làm từ câu a nếu ra thì các câu khác cũng dễ thôi

14 tháng 8 2016

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A=1-\frac{1}{2010}\)

\(A=\frac{2009}{2010}\)

10 tháng 5 2016

\(K=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(K=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(K=2\times\frac{502}{1005}\)

\(K=\frac{1004}{1005}\)

\(F=\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\)

\(3F=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\)

\(3F=\frac{1}{3}-\frac{1}{33}\)

\(F=\frac{10}{33}:3\)

\(F=\frac{10}{99}\)

\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(I=1-\frac{1}{2010}\)

\(I=\frac{2009}{2010}\)

4 tháng 3 2020

a) \(I=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2009\cdot2010}\)

\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2009}-\frac{1}{2010}\)

\(I=1-\frac{1}{2010}=\frac{2009}{2010}\)

b) \(K=\frac{4}{2\cdot4}+\frac{4}{2\cdot6}+\frac{4}{6\cdot8}+....+\frac{4}{2008\cdot2010}\)

\(\frac{1}{2}K=\frac{1}{2}\left(\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+....+\frac{4}{2008\cdot2010}\right)\)

\(\frac{1}{2}K=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\)

\(\frac{1}{2}K=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2008}-\frac{2}{2010}\)

\(\frac{1}{2}K=1-\frac{1}{2010}=\frac{2009}{2010}\)

\(K=\frac{2009}{2010}:\frac{1}{2}=\frac{2009}{1005}\)

2 tháng 5 2019

A=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2016}-\frac{1}{2017}\)

A=\(\frac{1}{1}-\frac{1}{2017}\)

A=\(\frac{2016}{2017}\)

mình quên ghi dấu "=" xin lỗi nhé

3 tháng 6 2020

mình viết nhầm=)))))

3 tháng 6 2020

\(b,\frac{10}{99}\)+\(\frac{11}{199}\)+\(\frac{12}{299}\).\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{-1}{6}\)

14 tháng 8 2017

Ta có:

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{1}{4,6}+\frac{1}{6.8}+...+\frac{1}{98.100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{49}{100}=\frac{49}{200}\)

14 tháng 8 2017

Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(4-2=2;6-4=2;...\)

\(2A=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(2A=\frac{1}{2}-\frac{1}{100}\)

\(2A=\frac{49}{100}\)

17 tháng 4 2017

Ta có: 

10 tháng 5 2017

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}=\frac{2016}{2017}\)