K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

Sử dụng bđt cô-si cho 3 số là ok

\(a^4b^4+b^4c^4+c^4a^4\ge3\sqrt[3]{a^4b^4b^4c^4c^4a^4}=3a^4b^4c^4\)

P/S: Cái gt hơi thừa thì phải ???

29 tháng 3 2019

Ấy chết pẹ , nhầm , bài nãy sai bỏ đi nha

NV
23 tháng 10 2020

Cộng vế với vế giả thiết:

\(a^2+4b+4+b^2+4c+4+c^2+4a+4=0\)

\(\Leftrightarrow\left(a^2+4a+4\right)+\left(b^2+4b+4\right)+\left(c^2+4c+4\right)=0\)

\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(c+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+2=0\\b+2=0\\c+2=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c=-2\)

\(\Rightarrow P=1+1+1=3\)

13 tháng 7 2020

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

13 tháng 7 2020

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

12 tháng 6 2017

Đặt \(b+c-a=2x;c+a-b=2y;a+b-c=2z\)\(\Rightarrow a=y+z;b=z+x;c=x+y\)

\(P=\dfrac{4a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{4c}{a+b-c}=\dfrac{4\left(y+z\right)}{2x}+\dfrac{4\left(z+x\right)}{2y}+\dfrac{4\left(x+y\right)}{2z}\)\(\Leftrightarrow\dfrac{2\left(y+z\right)}{x}+\dfrac{2\left(z+x\right)}{y}+\dfrac{2\left(x+y\right)}{z}=2\left(\dfrac{y}{x}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{x}{y}+\dfrac{x}{z}+\dfrac{y}{z}\right)\ge2.\left(2+2+2\right)=12\)

18 tháng 3 2019

Áp dụng bđt Cauchy-Schwarz:

\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{9}{4a+4b+4c}\)Dấu "=" xảy ra khi a=b=c

26 tháng 5 2018

tích đi rồi ta làm

26 tháng 5 2018

tích đi bạn

18 tháng 9 2016

\(a^2+4b+4=0\)

\(b^2+4c+4=0\)

\(c^2+4a+4=0\)

\(=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0\)

\(=>\left(a+2\right)^2+\left(b+2\right)^2+\left(c+2\right)^2=0\)

\(=>a+2=b+2=c+2=0\)

\(=>a=b=c=-2\)

\(=>a^{10}+b^{10}+c^{10}=\left(-2\right)^{10}+\left(-2\right)^{10}+\left(-2\right)=3.\left(-2\right)^{10}=3072\)