Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4 + 2x3 + 5x2 + 4x -12=0
<=> x4 - x3 + 3x3 - 3x2 + 8x2 - 8x + 12x - 12 = 0
<=> ( x4 - x3 ) + ( 3x3 - 3x2 ) + ( 8x2 - 8x ) + ( 12x - 12 ) = 0
<=> ( x - 1 ) ( x3 + 3x2+ 8x +12) = 0
<=> ( x -1 ).[ ( x3 + 2x2 ) + ( x2 + 2x ) + ( 6x +1) ] = 0
<=>( x - 1). ( x + 2 ).( x2 + x + 6 ) = 0
<=> x = 1 hoặc x = -2
a ) \(x^2+5x+6\)
\(=x^2+5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\)
b ) \(x^2\left(1-x^2\right)-4+4x^2\)
\(=x^2\left(1-x^2\right)-4\left(1-x^2\right)\)
\(=\left(x^2-4\right)\left(1-x^2\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1+x\right)\)
a) \(x^2+5x+6\\ =x^2+5x+\frac{25}{4}-\frac{1}{4}\\ =\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\\ \)
b) \(x^2\left(1-x^2\right)-4+4x^2\\ =x^2\left(1-x^2\right)-4\left(1-x^2\right)\\ =\left(x^2-4\right)\left(1-x^2\right)\\ =\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1+x\right)\)
a/ \(x^2+5x+6\)
\(=x^2+5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\)
\(=\left(x+3\right)\left(x+2\right)\)
b/ \(x^2\left(1-x^2\right)-4+4x^2\)
\(=x^2\left(1-x^2\right)-4\left(1-x^2\right)\)
\(=\left(x^2-4\right)\left(1-x^2\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1-x\right)\)
Vũ Thanh Bình sai rùi
\(x^5+5x^3+4x\)
\(=x^5+4x^3+x^3+4x\)
\(=x^3.\left(x^2+4\right)+x\left(x^2+4\right)\)
\(=\left(x^3+x\right)\left(x^2+4\right)\)
\(=x\left(x^2+1\right)\left(x^2+4\right)\)
\(=x^5+4x^3+x^3+4x\)
\(=x^3\left(x^2+4\right)+x\left(x^2-4\right)\)
\(=\left(x^3+x\right)\left(x^2-2^2\right)\)
\(=x\left(x^2+1\right)\left(x-2\right)\left(x+2\right)\)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
\(x^2-5x+6\)
\(=x^2-5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{5}{2}-\frac{1}{2}\right)\left(x-\frac{5}{2}+\frac{1}{2}\right)\)
\(=\left(x-3\right)\left(x-2\right)\)
\(x^2-5x+6 \)
= \(x^2-2x-3x+6\)
= \(\left(x^2-2x\right)-\left(3x-6\right)\)
= \(x\left(x-2\right)-3\left(x-2\right)\)
= \(\left(x-2\right)\left(x-3\right)\)
\(4x^2-5x-6=4x^2-8x+3x-6\)
\(=4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(4x+3\right)\)