Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x+1\right)^3=125\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
b) \(1999^{2x-6}=1\)
\(\Rightarrow1999^{2x-1}=1999^0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
c) \(x^{2002}=x\)
\(\Rightarrow x^{2002}-x=0\)
\(\Rightarrow x.\left(x^{2001}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x^{2001}-1=0\)
+) \(x=0\)
+) \(x^{2001}-1=0\Rightarrow x^{2001}=1\Rightarrow x=1\)
Vậy \(x\in\left\{0;1\right\}\)
d) \(\left(x-1\right)^2=9\)
\(\Rightarrow x-1=\pm3\)
+) \(x-1=3\Rightarrow x=4\)
+) \(x-1=-3\Rightarrow x=-2\)
Vậy \(x\in\left\{4;-2\right\}\)
e) \(\left(2x-3\right)^2=81\)
\(\Rightarrow2x-3=\pm9\)
+) \(2x-3=9\Rightarrow2x=12\Rightarrow x=6\)
+) \(2x-3=-9\Rightarrow2x=-6\Rightarrow x=-3\)
Vậy \(x\in\left\{6;-3\right\}\)
Các phần khác làm tương tự
a) \(\left(\frac{1}{81}\right)^x\cdot27^{2x}=\left(-9\right)^4\)
\(\Leftrightarrow\frac{1}{3^{4x}}\cdot3^{6x}=9^4\)
\(\Leftrightarrow\frac{3^{6x}}{3^{4x}}=3^8\)
\(\Leftrightarrow3^{2x}=3^8\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
b) \(5^x\cdot\left(5^3\right)^2=625\)
\(\Leftrightarrow5^{x+6}=5^4\)
\(\Leftrightarrow x+6=4\)
\(\Leftrightarrow x=-2\)
c) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
\(\Leftrightarrow\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
\(\Leftrightarrow\left(4x-1\right)^{20}\cdot\left[\left(4x-1\right)^{10}-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\\left(4x-1\right)^{10}=1=\left(\pm1\right)^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{1}{2}\\x=0\end{matrix}\right.\)
Vậy....
a) \(\left(x-4\right)^2=\left(x-4\right)^4\)
\(\Rightarrow\left(x-4\right)^2-\left(x-4^4\right)=0\)
\(\Rightarrow\left(x-4\right)^2.\left[1-\left(x-4\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-4\right)^2=0\\1-\left(x-4\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\\left(x-4\right)^2=1^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-4=1\\x-4=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=5\\x=3\end{matrix}\right.\)
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{9}{25}\\ \left|\left(x+\frac{1}{5}\right)\right|=\frac{3}{5}\)
TH1: \(x=\frac{3}{5}-\frac{1}{5}\\ x=\frac{2}{5}\)
TH2: \(\left|\left(x+\frac{1}{5}\right)\right|=-\frac{3}{5}\\ x=-\frac{3}{5}-\frac{1}{5}\\ x=-\frac{4}{5}\)
\(a,\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Rightarrow x+\frac{1}{5}=\frac{3}{5}\)
\(\Rightarrow x=\frac{2}{5}\)
\(b,-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Rightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{32}{27}+\frac{24}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Rightarrow3x-\frac{7}{9}=-\frac{2}{3}\)
\(\Rightarrow3x=-\frac{2}{3}+\frac{7}{9}\)
\(\Rightarrow3x=\frac{1}{9}\)
\(\Rightarrow x=\frac{1}{27}\)
\(c,\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Rightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
a, (x-1) . 0,5 = 7,5 : (x-1)
=> = ( x - 1 ) 0,5 = \(\frac{x-1}{2}\)
\(=\frac{7,5}{x-1}=\frac{15}{2\left(x-1\right)}\)
=> x = - 1 \(\sqrt{15}\)
x = \(\sqrt{15+1}\)
đề sao sao ý
a) 25 : x = x
25 = x^2
x^2 = ( +-5 )^2
b) 3358 : 23 = 2x - 6
146 = 2x - 6
2x = 152
x = 76
c) ( 2x + 1 )^3 = 27 = 3^3
=> 2x + 1 = 3
=> 2x = 2
=> x = 1
d) ( x - 2 )^3 = ( x - 2 )^2
( x - 2 )^2 . ( x - 2 ) - ( x -2 )^2 = 0
( x - 2 )^2 . [ ( x - 2 ) - 1 ] = 0
+) x - 2 = 0
=> x = 2
+) x - 2 - 1 = 0
x - 3 = 0
x = 3
\(25\div x=x\Rightarrow x.x=25\Rightarrow x^2=25\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
\(3358\div23=2x-6\)
\(\Rightarrow2x-6=146\)
\(\Rightarrow2x=152\)
\(\Rightarrow x=\frac{152}{2}=76\)
\(\left(2x+1\right)^3=27\)
Mà \(3^3=27\)
Nên \(\left(2x+1\right)^3=3^3\)
\(\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
\(\left(x-2\right)^3=\left(x-2\right)^2\)
\(\Rightarrow\left(x-2\right)^3-\left(x-2\right)^2=0\)
\(\Rightarrow\left(x-2\right)^2.\left(x-2-1\right)=0\)
\(\Rightarrow\left(x-2\right)^2.\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)
Vậy......................
d, \(=>\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4.\)
=> \(2x+7=4\)
=> 2x= -3
=> x=-3/2 . Vậy x=-3/2
e, => \(\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^2}{131}.\)
=> \(\frac{7^x\left(7^2+7+1\right)}{57}=\frac{5^{2x}\left(1+5+5^2\right)}{131}\)
= > \(\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)
=> \(7^x=5^{2x}\)
Đến đoạn này là mik nghĩ không ra nhé
Cô làm tiếp giúp Linh Đan:
\(7^x=5^{2x}\Rightarrow7^x=25^x\Rightarrow\frac{7^x}{25^x}=1\Rightarrow\left(\frac{7}{25}\right)^x=1\Rightarrow x=0\)
3^ x . 3^ 2= 729
3^ x . 9 = 729
3^ x = 729: 9
3^x =81
vậy x = 3^3
5^ x . 625 = 3125
5^x = 3125:625
5^x = 5
vậy x = 1
( 2x+1 )^ 3 = 27
( 2x+1) ^ 3 = 3^3
vậy 2x+1 = 3
vậy x = 0