Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)
Có \(\left|x+\frac{5}{2}\right|\ge0\)với mọi x
\(\left|\frac{2}{5}-x\right|\ge0\)với mọi x
=> Để \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)=> \(\hept{\begin{cases}\left|x+\frac{5}{2}\right|=0\\\left|\frac{2}{5}-x\right|=0\end{cases}}\)
=> \(\hept{\begin{cases}x+\frac{5}{2}=0\\\frac{2}{5}-x=0\end{cases}}\)
=> \(\hept{\begin{cases}x=-\frac{5}{2}\\x=\frac{2}{5}\end{cases}}\)(Không thỏa mãn vì x không thể đồng thời nhận 2 giá trị)
=> Không có giá trị nào của x thỏa mãn đề bài
=> Số giá trị của x là 0
\(\left|x+\frac{5}{2}\right|\ge0\) và \(\left|\frac{2}{5}-x\right|\ge0\)
\(\Rightarrow\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\Leftrightarrow\hept{\begin{cases}x+\frac{5}{2}=0\\\frac{2}{5}-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\x=\frac{2}{5}\end{cases}}}\)
Vậy x có 2 giá trị.
1. a) \(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{1}{2}+\frac{1}{3}=\frac{9}{12}+\frac{6}{12}+\frac{4}{12}=\frac{19}{12}\)
b) \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}\)
\(=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}\)
\(=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}\)
\(=5+1+0,5=6,5\)
2) a) 1/2 + 2/3x = 1/4
=> 2/3x = 1/4 - 1/2
=> 2/3x = -1/4
=> x = -1/4 : 2/3
=> x = -3/8
b) 3/5 + 2/5 : x = 3 1/2
=> 3/5 + 2/5 : x = 7/2
=> 2/5 : x = 7/2 - 3/5
=> 2/5 : x = 29/10
=> x = 2/5 : 29/10
=> x = 4/29
c) x+4/2004 + x+3/2005 = x+2/2006 + x+1/2007
=> x+4/2004 + 1 + x+3/2005 + 1 = x+2/2006 + 1 + x+1/2007 + 1
=> x+2008/2004 + x+2008/2005 = x+2008/2006 + x+2008/2007
=> x+2008/2004 + x+2008/2005 - x+2008/2006 - x+2008/2007 = 0
=> (x+2008). (1/2004 + 1/2005 - 1/2006 - 1/2007) = 0
Vì 1/2004 + 1/2005 - 1/2006 - 1/2007 khác 0
Nên x + 2008 = 0 <=> x = -2008
Vậy x = -2008
1,a,\(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{2}{4}+\frac{1}{3}=\frac{5}{4}+\frac{1}{3}=\frac{15}{12}+\frac{4}{12}=\frac{19}{12}\)
b, \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}=5+1+\frac{1}{2}=\frac{13}{2}\)2,a,\(\frac{1}{2}+\frac{2}{3}.x=\frac{1}{4}\)
<=>\(\frac{2}{3}.x=-\frac{1}{2}\)
<=>\(x=-\frac{3}{4}\)
b,\(\frac{3}{5}+\frac{2}{5}\div x=3\frac{1}{2}\)
<=>\(\frac{2}{5x}=\frac{29}{10}\)
<=>\(x=\frac{29}{4}\)
c,\(\frac{x+4}{2004}+\frac{x+3}{2005}=\frac{x+2}{2006}+\frac{x+1}{2007}\)
<=> \(\frac{x+4}{2004}+1+\frac{x+3}{2005}+1=\frac{x+2}{2006}+1+\frac{x+1}{2007}+1\)
<=>\(\frac{x+2008}{2004}+\frac{x+2008}{2005}=\frac{x+2008}{2006}+\frac{x+2008}{2007}\)
<=>\(\left(x+2008\right)\left(\frac{1}{2004}+\frac{1}{2005}-\frac{1}{2006}-\frac{1}{2007}\right)\)=0
<=>x+2008=0 vì cái ngoặc còn lại\(\ne0\)
<=>x=-2008
Vậy x=-2008
Bạn nhớ tk cho mình vì mình đã chăm chỉ làm hết bài bạn hỏi nha!
Xét trường hợp giống câu kia đi :
Gợi ý :
Th1 : \(\left|x-\frac{3}{4}\right|\ge0\)
Th2 \(\left|x-\frac{3}{4}\right|< 0\)
Vì \(\left|y-2\right|\ge0\forall y\)
\(\Rightarrow\left|y-2\right|-3\ge-3\forall y\)
Dấu "=" xảy ra <=> |y - 2| = 0 => y = 2
Vậy GTNN của \(\left|y-2\right|-3\) là - 3 tại y = 2
Vì \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2-19\ge-19\forall x\)
Dấu "=" xảy ra <=>\(\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy ......................
a;\(10-\left(y^2-25\right)^4\)
vì \(\left(y^2-25\right)^4\ge0\)c với mọi \(Y\varepsilon R\)=>\(10-\left(y^2-25\right)^4\le10\)
vậy giá trị lớn nhất của biểu thức \(10-\left(y^2-25\right)^4\) là 1\(10< =>y^2-25=0=>y=5;y=-5\)
b;\(-125-\left(x-4\right)^2-\left(y-5\right)^2\)=-\(-125-\left[\left(x-4\right)^2-\left(y-5\right)^2\right]\le-125\)
=>giá trị lớn nhất của biểu thức \(-125-\left(x-4\right)^2-\left(y-5\right)^2\) là -125
\(< =>\left(x-4\right)^2=0;\left(y-5\right)^2=0=>x=4'y=5\)
A B C H 1 2
\(AH=\frac{1}{2}BC\) \(\Rightarrow AH=BH=HC\)
=> Tam giác BHA vuông cân \(\Rightarrow\widehat{A}_1=\widehat{B}=45^0\)
=> Tam giác CHA vuông cân \(\Rightarrow\widehat{A}_2=\widehat{C}=45^0\)
\(\Rightarrow\widehat{BAC}=\widehat{A_1}+\widehat{A_2}=45^0+45^0=90^0\)
Vậy \(\widehat{BAC}=90^0\)
2x-1=24
=>x-1=4
=>x=4+1
=>x=5
\(2^{x-1}=16=2^4\)
x-1 =4
x =5