Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{5}-1\right).\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=\sqrt{9-5}\left(\sqrt{5}-1\right)\sqrt{6+2\sqrt{5}}\)
\(=2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\)
\(=2\left(5-1\right)\)
\(=8\)
Chưa học tới nên sai thì thoi nhé :)
\(a)\) ĐKXĐ : \(1-16x^2\ge0\)
\(\Leftrightarrow\)\(1^2-\left(4x\right)^2\ge0\)
\(\Leftrightarrow\)\(\left(1+4x\right)\left(1-4x\right)\ge0\)
TH1 : \(\hept{\begin{cases}1+4x\ge0\\1-4x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{-1}{4}\\x\le\frac{1}{4}\end{cases}\Leftrightarrow}\frac{-1}{4}\le x\le\frac{1}{4}}\)
TH2 : \(\hept{\begin{cases}1+4x\le0\\1-4x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{-1}{4}\\x\ge\frac{1}{4}\end{cases}}\) ( loại )
Vậy ĐKXĐ : \(\frac{-1}{4}\le x\le\frac{1}{4}\)
Chúc bạn học tốt ~
\(\left(4+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(=\left(4+\sqrt{5}\right)\left(8-2\sqrt{15}\right)\)
a) \(\sqrt{14-6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
b, c) tương tự câu a.
d) \(\left(3-\sqrt{2}\right)\sqrt{11+6\sqrt{2}}\)
\(=\left(3-\sqrt{2}\right)\sqrt{\left(3+\sqrt{2}\right)^2}\)
\(=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\)
\(=9-2\)
\(=7\)
e) \(\sqrt{11-6\sqrt{2}+\sqrt{3-2\sqrt{2}}}\)
\(=\sqrt{11-6\sqrt{2}+\sqrt{\left(1-\sqrt{2}\right)^2}}\)
\(=\sqrt{11-6\sqrt{2}+\sqrt{2}-1}\)
\(=\sqrt{10-5\sqrt{2}}\)
Ok !! chi tiết =))
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{1+2+3+2\sqrt{2}.\sqrt{1}+2\sqrt{2}.\sqrt{3}+2\sqrt{1}.\sqrt{3}}-\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=1+\sqrt{2}+\sqrt{3}-\sqrt{3}-1\)
\(=\sqrt{2}\)
đặt \(x^2+2x=a\) , thay vào pt ta được:
\(\sqrt{3a+16}+\sqrt{a}=2\sqrt{a+4}\)
\(\Leftrightarrow\left(\sqrt{3a+16}\right)^2=\left(2\sqrt{a+4}-\sqrt{a}\right)^2\)
\(\Leftrightarrow3a+16=4a+16-4\sqrt{a\left(a+4\right)}+a\)
\(\Leftrightarrow\left(4\sqrt{a^2+4a}\right)^2=\left(2a\right)^2\)
\(\Leftrightarrow16a^2+64a=4a^2\)
\(\Leftrightarrow12a^2+64a=0\Leftrightarrow\orbr{\begin{cases}a=0\\a=-\frac{16}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2x=0\\x^2+2x=-\frac{16}{3}\end{cases}}\)
Tự giải tiếp nhá
\(tacó
18-8\sqrt{2}=\left(\sqrt{2}-4\right)^2
\)) (phân tích theo HĐt)
suy ra \(\sqrt{6-2\sqrt{2}+\sqrt{12}+4-\sqrt{2}}\)( vì 4 > căn 2)
RG ta đc
\(\sqrt{10-3\sqrt{2}+2\sqrt{3}}\)
{ \(\sqrt{10-\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)}\)bỏ bước này cx đc }
bn nên xem lại đề vì k bài nào kêu tính mà ra KQ nhìu căn như w
nhớ cho mik nha ~!!!
2√48−3√75+5√3248−375+53
=2√16.3−3√25.3+5√3=216.3−325.3+53
=2√42.3−3√52.3+5√3=242.3−352.3+53
=2.4√3−3.5√3+5√3=2.43−3.53+53
=8√3−15√3+5√3=83−153+53
=(8−15+5).√3=(8−15+5).3
=−2√3
mk cảm ơn nhìu nha