K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

a) Ta có: \(\frac{x+a}{x+2}+\frac{x-2}{x-a}=2\left(1\right)\)

Với a = 4

Thay vào phương trình (t) ta được:

  \(\frac{x+2}{x+2}+\frac{x-2}{x-2}=2\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow x^2-4+x^2-4=2\left(x^2-4\right)\)

\(\Leftrightarrow2x^2=2x^2-8\)

\(\Leftrightarrow0x=-8\)

Vậy phương trình vô nghiệm

b) Nếu x = -1

\(\Rightarrow\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)

\(\Leftrightarrow\frac{-1+a}{1}+\frac{-3}{-1-a}=2\)

\(\Leftrightarrow\frac{\left(-1+a\right)\left(-1-a\right)}{-1-a}+\frac{-3}{-1-a}=\frac{2\left(-1-a\right)}{-1-a}\)

\(\Leftrightarrow1+a-a-a^2-3=-2-2a\)

\(\Leftrightarrow-a^2+2a=-2-1+3\)

\(\Leftrightarrow a\left(2-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\2-a=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)

Vậy a = {0;2}

NĂM MỚI VUI VẺ

14 tháng 2 2018

\(a,\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)

\(\frac{x+2+2}{x+2}+\frac{x-4+2}{x-4}=2\)

=> \(1+\frac{2}{x+2}+1+\frac{2}{x-4}=2\)

=>\(2\left(\frac{x-4+x+2}{\left(x+2\right)\left(x-4\right)}\right)=0\)

=> x=1 (t/m \(x\ne-2\) và \(x\ne4\))

9 tháng 4 2018

\(4-m=\dfrac{2}{x+1}\)

Đkxđ : x +1 ≠ 0 ⇔x ≠ -1

\(\forall\) x≠-1; \(\dfrac{2}{x+1}\ne0\)

để pt có nghiệm thì 4 - m ≠ 0 ⇔ m ≠ 4

vậy m ≠ 4 thì pt có nghiệm

10 tháng 4 2018

(a)<=>(b)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\left(4-m\right)\left(x+1\right)=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m\ne4\\x=\dfrac{2}{4-m}-1=\dfrac{2-\left(4-m\right)}{4-m}=\dfrac{m-2}{4-m}\end{matrix}\right.\)

\(x\ne-1\Leftrightarrow\dfrac{m-2}{4-m}\ne-1\Leftrightarrow m-2\ne m-4\Leftrightarrow-2\ne-4\forall m\)

ket luan : m khac 4

8 tháng 5 2017

Câu 2 thế y = 1 - x rồi quy đồng như bình thường là ra bn nhé

27 tháng 2 2019

a) Thay \(x=1\)vào pt ta được :

\(1+k-4-4=0\)

\(\Leftrightarrow k-7=0\)

\(\Leftrightarrow k=7\)

b) Thay \(k=7\)vào pt ta được :

\(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)

\(x-1=0\Leftrightarrow x=1\)

\(x^2+8x+4=0\)

Ta có :  \(\Delta=8^2-4\times4=48>0\)

\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)

Vậy ...

16 tháng 11 2021

bạn làm giống như tìm x để nó là số cp thôi

 

 

16 tháng 11 2021

Đặt A=\(1+x+x^2+x^3+x^4\)

=>4A=\(4x^4+4x^3+4x^2+4x+4\)

    4A=\((4x^4+4x^3+x^2)+(x^2+4x+4)+2x^2\)\(=(2x^2+x)^2+(x+2)^2+2x^2>(2x^2+x)^2\) (1)

Lại có:

4A=\((4x^4+x^2+2^2+4x^3+4x+8x^2)-5x^2\)

4A=\((2x^2+x+2)^2-5x^2\)\(<(2x^2+x+2)^2\)(2)

Vì A là số chính phương

=>4A cũng là số chính phương

Từ (1) và (2)

=>4A=\((2x^2+x+1)^2\)

Mà 4A=4\((1+x+x^2+x^3+x^4)\)

=>\((2x^2+x+1)^2=4(1+x+x^2+x^3+x^4)\)

Từ đây giải phương trình ra thôi

29 tháng 11 2015

1)\(x=-2\Leftrightarrow8\left(-2\right)-7+m=-2-6\Rightarrow m=15\)

2) không dõ đề

3) \(\left(x-\frac{1}{20}\right)^2=\frac{1}{5}+\frac{1}{400}=\frac{81}{400}\)\(\Leftrightarrow x=\frac{1}{20}+\frac{9}{20}=\frac{1}{2};x=\frac{1}{20}-\frac{9}{20}=-\frac{2}{5}\)

Thiếu vế phải rồi bạn

19 tháng 6 2023

Sorry bn tai vua nay no bi loi