Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}\)
\(=xyz.\left [ \frac{1}{yz(1+x^2)}+\frac{2}{xz(1+y^2)}+\frac{3}{xy(1+z^2)} \right ]\)
\(=xyz.\left [ \frac{1}{yz+x(x+y+z)}+\frac{2}{xz+y(x+y+z)}+\frac{3}{xy+z(x+y+z)} \right ]\)
\(=xyz.\left [ \frac{1}{(x+y)(x+z)}+\frac{2}{(x+y)(y+z)}+\frac{3}{(x+z)(y+z)} \right ]\)
\(=xyz.\frac{y+z+2(z+x)+3(x+y)}{(x+y)(y+z)(z+x)}=\frac{xyz(5x+4y+3z)}{(x+y)(y+z)(z+x)}\)
Nếu x,y,z khác số dư khi chia cho 3
+Nếu có 2 số chia hết cho 3.Số còn lại không chia hết cho 3.Giả sử x,y đều chia hết cho 3, z không chia hết cho 3=>x+y+z không chia hết cho 3. Do x,y đều chia hết cho 3 nên (x−y)⋮3=>(x−y)(y−z)(z−x)⋮3(Vô lý do (x−y)(y−z)(z−x)=x+y+z)
+Nếu có 1 số chia hết cho 3, 2 số còn lại khác số chia khi chia cho 3, không chia hết cho 3.Tương tự dẫn đến vô lý.
Vậy cả 3 số có cùng số dư khi chia cho 3 =>(x−y)⋮3,(y−z)⋮3,(z−x)⋮3=>(x−y)(y−z)(z−x)⋮27=>(x+y+z)⋮27
áp dụng BĐT xy+yz+zx<= x2+y2+z2 chia 350 đảo dấu thì cùng chiều
đặt 1/(x2+y2+z2) ra làm nhân tử chung rồi 350+386=736
rồi áp dụng BĐT Cô-si SVAC-XƠ
thì x2+y2+z2<= (x+y+z)2/3 = 1/3
rồi chia 1 cho 1/3 rồi 3.736=2208>2015
A = \(\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{x+z}\)
A=3 \(-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)
mà \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
=> A <2 (1)
mặt khác A=\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)
mà \(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
=> A >1 (2)
từ (1) và (2) => 1<A<2 => A ko phải là số nguyên