Cho 2 đường tròn (O) và (O') cắt nhau tại A và B. Kẻ tiếp tuyến chung CD (C, D là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

A B O O' C D E F I M N J

+) Chứng minh tứ giác BCID nội tiếp ?

Ta có: ^BCE = ^BAE; ^BDF = ^BAF. Do ^BAE + ^BAF = 1800 nên ^BCE + ^BDF = 1800

=> ^BCI + ^BDI = 3600 - ^BCE - ^BDF = 1800 => Tứ giác BCID nội tiếp (đpcm).

+) Chứng minh IA là phân giác góc MIN ?

Gọi đường thẳng AB cắt CD tại J. Ta thấy: JC là tiếp tuyến từ điểm J tới (O), JAB là cát tuyến của (O)

Suy ra JC2 = JA.JB (Hệ thức lượng đường tròn). Tương tự JD2 = JA.JB

=> JC = JD. Áp dụng hệ quả ĐL Thales ta có \(\frac{AM}{JC}=\frac{AN}{JD}\left(=\frac{BA}{BJ}\right)\)(Vì EF // CD) => AM=AN (1) 

Mặt khác: ^ADC = ^AFD = ^IDC, ^ACD = ^CEA = ^ICD. Từ đó \(\Delta\)CAD = \(\Delta\)CID (g.c.g)

=> CI = CA và DI = DA => CD là trung trực của AI => CD vuông góc AI

Mà MN // CD nên IA vuông góc MN (2)

Từ (1) và (2) suy ra IA là trung trực của MN => \(\Delta\)MIN cân tại I có IA là trung trực cạnh MN

=> IA đồng thời là phân giác của ^MIN (đpcm).

a: TH1: A và CD nằm cùng một phía so với đường O'O

góc ABC=góc AEC=góc ICD

góc DBC=gsoc AED=góc IDC

=>góc DBA+góc DIC=góc ABC+góc DBC+góc DIC

=góc ICD+góc IDC+góc DIC=180 độ

=>BCID nội tiếp

TH2: A và CD nằm khác phía so với O'O

ABCE nội tiếp (O)

=>góc BCE+góc BAE=180 độ

=>góc BCE=góc BAF

Tương tự, ta được: góc BAF=góc BDI

=>góc BCE=góc BDI

=>góc BCI+góc BDI=180 độ

=>BCID nội tiếp

b: góc ICD=góc CEA=góc DCA

=>góc ICD=góc DCA

Chứng minh tương tự, ta được: góc IDC=góc CDA

Xét ΔICD và ΔACD có

góc ICD=góc DCA

CD chung

góc IDC=góc CDA

=>ΔICD=ΔACD

=>DI=DA và CI=CA

=>CD là trung trực của AI

c:
CD vuông góc AI

=>AI vuông góc MN

Gọi K là giao của AB và CD

Chứng minh được CK^2=KA*KB=KD^2

=>KC=KC

CD//MN

=>KC/AN=KD/AM=KB/AB

=>AN=AM

=>ΔIMN cân tại I

=>IA là phân giác của góc MIN

31 tháng 5 2017

a/ Ta có CF vuông góc AB tại F (gt) 

Nên góc CFB = 90 độ 

BE vuông góc AC tại E 

Nên góc BEC = 90 độ 

Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt 

Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .

góc BEC = 90 độ (cmt)

Nên tam giác BEC vuông tại E 

Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .