chứng minh rằng:Nếu x/(a+2b+c)=y/(2a+b-c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2015

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{9a}\)(1)

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\)(2)

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{4x-4y+z}{9c}\)(3)

Từ (1), (2), (3) => \(\frac{x+2y+z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)hay \(\frac{a}{x+2y+z}=\frac{b}{2z+y-z}=\frac{c}{4x-4y+z}\)(vì cùng = 9)

 

 

19 tháng 3 2016

cảm ơn bn nhiều

23 tháng 10 2016

Từ xa+2b+c=y2a+b−c=z4a−4b+cxa+2b+c=y2a+b−c=z4a−4b+c
=> a+2b+cx=2a+b−cy=4a−4b+cza+2b+cx=2a+b−cy=4a−4b+cz
=> 2(a+2b+c)2x=2a+b−cy=4a−4b+cz=b2x+y−z2(a+2b+c)2x=2a+b−cy=4a−4b+cz=b2x+y−z (1)
a+2b+cx=2(2a+b−c)2y=4a−4b+cz=ax+2y+za+2b+cx=2(2a+b−c)2y=4a−4b+cz=ax+2y+z (2)
4(a+2b+c)4x=4(2a+b−c)4y=4a−4b+cz=c4x−4y+z4(a+2b+c)4x=4(2a+b−c)4y=4a−4b+cz=c4x−4y+z (3)
từ (1 , (2) , (3) ta được đpcm

17 tháng 3 2017

Tìm số tự nhiên n dể phân số (7n-8)/(2n-3) có giá trị lớn nhất

1 tháng 4 2017

Khó quá hà

2 tháng 4 2017

mình mới lớp 6 nên chả hiểu gì cả

6 tháng 11 2017

\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{x}{4a-4b+6}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y+z}\)

Giải:

\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{x+2y+z}{9a}\left(1\right)\)

\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{2x+y-z}{9b}\left(2\right)\)

\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{4x-4y+z}{9c}\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)hay

\(\dfrac{a}{x+2y+z}=\dfrac{b}{2z+y-z}=\dfrac{c}{4x-4y+z}\) cùng = 9