Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hs trên bậc nhất khi \(a\ne0\)
Thay x = 3 ; y = 4 vào đths trên ta được : \(4=3a+8\Leftrightarrow a=-\frac{4}{3}\)( tm )
Trong các hàm số trên, các hàm số bậc nhất là:
\(y=25\left(x+5\right),y=\frac{10x+7}{9}\).
P(x) = 0
=> (4m + 5x - 2)x + (6m - 7n - 6) = 0 \(\forall x\)
=> \(\hept{\begin{cases}4m+5n-2=0\\6m-7n-6=0\end{cases}}\Rightarrow\hept{\begin{cases}4m+5n=2\\6m-7n=6\end{cases}}\Rightarrow\hept{\begin{cases}n=\frac{-6}{29}\\m=\frac{22}{29}\end{cases}}\)
Vậy m = -6/29; n = 22/29 thì P(x) = 0
Để đồ thị hàm số \(y=\left(2m+2\right)x-5m\)song song với đường thẳng \(y=4x+1\)thì:
\(\hept{\begin{cases}2m+2=4\\-5m\ne1\end{cases}}\Leftrightarrow m=1\).
a) Ta có:
\(\sqrt{\frac{289}{225}}=\sqrt{\frac{\sqrt{289}}{\sqrt{225}}}=\sqrt{\frac{17^2}{15^2}}=\frac{17}{15}\)
b) Ta có:
\(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\sqrt{\frac{\sqrt{64}}{\sqrt{25}}}=\sqrt{\frac{8^2}{5^2}}=\frac{8}{5}\)
c) Ta có:
\(\sqrt{\frac{0,25}{9}}=\sqrt{\frac{\sqrt{0,25}}{\sqrt{9}}}=\sqrt{\frac{0,5^2}{3^2}}=\frac{0,5}{3}=\frac{1}{6}\)
d) Ta có:
\(\sqrt{\frac{8,1}{1,6}}=\sqrt{\frac{81.0,1}{16.0,1}}=\sqrt{\frac{81}{16}}=\sqrt{\frac{\sqrt{81}}{\sqrt{16}}}=\sqrt{\frac{9^2}{4^2}}=\frac{9}{4}\)
a)Ta có: \(\sqrt{\frac{289}{225}}=\frac{\sqrt{289}}{\sqrt{225}}=\frac{17}{15}\)
b) Ta có: \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{\sqrt{64}}{\sqrt{25}}=\frac{8}{5}\)
c) Ta có: \(\sqrt{\frac{0,25}{9}}=\frac{\sqrt{0,25}}{\sqrt{9}}=\frac{0,5}{3}=\frac{1}{6}\)
d)Ta có : \(\sqrt{\frac{8,1}{1,6}}=\frac{\sqrt{8,1}}{\sqrt{1,6}}=\frac{\sqrt{8,1}.100}{\sqrt{1,6}.100}=\frac{\sqrt{81}}{\sqrt{16}}=\frac{9}{4}\)
Ta có 52n+7 = 25n+7
Lại có 25:8 dư 1 => 25n:8 dư 1n
Mà 1n = 1 => 25n chia 8 dư 1
=> 25n+7 chia 8 dư 1+7 hay dư 8
Mà 8⋮8 => đpcm