Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy : \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};\frac{1}{4^2}>\frac{1}{4.5};...;\frac{1}{199^2}>\frac{1}{199.200}\)
suy ra: \(M>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{199.200}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{2}-\frac{1}{200}\)
=\(\frac{100}{200}-\frac{1}{200}=\frac{99}{200}\)
=> \(M>\frac{99}{200}\)
ta cũng thấy: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{199^2}<\frac{1}{198.199}\)
suy ra:\(M<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{198.199}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{198}-\frac{1}{199}=\frac{1}{1}-\frac{1}{199}\)
=\(\frac{199}{199}-\frac{1}{199}=\frac{198}{199}\)
=>\(M<\frac{198}{199}\)
vậy \(\frac{99}{200}
\(2x-1⋮x-3\)
\(2x-6+5⋮x-3\)
\(2\left(x-3\right)+5⋮x-3\)
\(5⋮x-3\)
hay \(x-3\in BC\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x=\left\{2;4;-2;8\right\}\)
s=3(1+28+27+26+......+1)/29
mk nghĩ vay toi day bạn lam dc roi
\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
\(=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(199-1-1-1-...1\right)\)(198 chữ số 1)
\(=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+1=200.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{197}+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}\right)=200.A\)
\(\Rightarrow\frac{A}{B}=\frac{A}{200.A}=\frac{1}{200}\)
S = 1.(2-1)+2.(3-1)+3.(4-1)+...+99.(100-1)+100.(101-1)
S = 1.2-1+2.3-2+3.4-3+...+99.100-99+100.101-100
S = (1.2+2.3+3.4+...+99.100+100.101)-(1+2+3+...+99+100)
Đặt A = 1.2+2.3+3.4+...+99.100+100.101
3A = 3(1.2+2.3+3.4+...+99.100+100.101)
3A = 1.2.3+2.3.3+3.4.3+...+99.100.3+100.101.3
3A = 1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)+100.101.(102-99)
3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100+100.101.102-99.100.101
3A = 100.101.102
A = 343400
Đặt B = 1+2+3+...+99+100 [có (100-1):1+1=100(số hạng)]
B = (100+1).100:2
B = 5050
=> S = A-B=343400-5050=338350
\(\frac{1}{2!}+\frac{2!}{4!}+...+\frac{198!}{200!}=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{199}-\frac{1}{200}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
l\(\frac{3}{4}.x-\frac{1}{2}\)l=\(\frac{1}{4}\)
=>\(\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\) hoặc \(\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\)
*nếu \(\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\)
=>\(\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}=\frac{1}{4}+\frac{2}{4}=\frac{3}{4}\)
=>\(x=\frac{3}{4}:\frac{3}{4}=1\)
*nếu \(\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\)
=>\(\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}=-\frac{1}{4}+\frac{2}{4}=\frac{1}{4}\)
=>\(x=\frac{1}{4}:\frac{3}{4}=\frac{1}{4}.\frac{4}{3}=\frac{1}{3}\)
vậy \(x\in\left\{\frac{1}{3};1\right\}\)
I Am A Good Boy_Wang Jun Kai Ahihi, M lười ghê ý
\(B=\frac{1}{199}+\frac{2}{198}+...+\frac{199}{1}=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(199-1-...-1\right)\)(198 số 1)
\(=\frac{200}{199}+\frac{200}{198}+...+1=200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}+\frac{1}{200}\right)=200.A\)
\(\Rightarrow\frac{A}{B}=\frac{A}{200A}=\frac{1}{200}\)
\(1+2+3+4+5+...+199\)
Số phần tử trong dãy: \(\dfrac{199-1}{1}+1=199\)
Tổng của dãy trên: \((199+1)\cdot199:2=19900\)