Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
a) Xét tam giác BGM và tam giác CEM có :
\(\widehat {GMB} = \widehat {EMC}\)(2 góc đối đỉnh)
GM = ME (do G đối xứng E qua M)
MB = MC (do M là trung điểm của BC)
\( \Rightarrow \Delta BGM = \Delta CEM(c - g - c)\)
\( \Rightarrow \widehat {GBM} = \widehat {MCE}\)(2 góc tương ứng bằng nhau)
Mà 2 góc trên ở vị trí so le trong nên BG⫽CE
b) Vì I là trung điểm BE nên AI sẽ là trung tuyến của tam giác ABE
Và BG cũng là trung tuyến của tam giác ABE do G là trung điểm AE
Vì BG cắt AI tại F nên F sẽ là trọng tâm của tam giác ABE
\(\, \Rightarrow AF = \dfrac{2}{3}AI\)(định lí về trọng tâm tam giác)
Mà AI = AF + FI \( \Rightarrow \) FI = AI – AF
\( \Rightarrow FI = AI - \dfrac{2}{3}AI = \dfrac{1}{3}AI\)
\( \Rightarrow 2FI = AF = \dfrac{2}{3}AI\)
\( \Rightarrow \) AF = 2 FI
E D C B H K x M N A
a) Xét \(\Delta BEA\) và \(\Delta DCA\) có:
AE = AC (gt)
\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)
AB = AD (gt)
\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)
\(\Rightarrow BE=CD\) (2 cạnh t/ư)
b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)
\(DN=\frac{1}{2}CD\) (N là tđ)
mà BE = CD \(\Rightarrow BM=DN\)
Vì \(\Delta BEA=\Delta DCA\) (câu a)
\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)
hay \(\widehat{MBA}=\widehat{NDA}\)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
AB = AD (gt)
\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)
BM = DN (c/m trên)
\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)
mà \(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)
\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)
\(\Rightarrow M,A,N\) thẳng hàng.
a) Xét tam giác ABC có AH là đường cao (gt)=> AH đồng thời là đường trung tuyến
=> HC=HB
câu b mk chả hiểu đề bài
a/ Xét tam giác BEM và tam giác CFM có:
góc BEM = góc CFM = 900 (GT)
BM = MC (AM là trung tuyến t/g ABC)
góc B = góc C (t/g ABC cân)
=> tam giác BEM = tam giác CFM
b/ Ta có: AB = AC (t/g ABC cân)
BE = CF (t/g BEM = t/g CFM)
=> AE = AF
Xét hai tam giác vuông AEM và AFM có:
AE = AF (cmt)
AM: cạnh chung
=> tam giác AEM = tam giác AFM
=> ME = MF
Ta có: AE = AF; ME = MF
=> AM là trung trực của EF
c/ Xét hai tam giác vuông ABD và ACD có:
AB = AC (GT)
AD: cạnh chung
=> tam giác ABD = tam giác ACD
=> BD = CD
Ta có: AB = AC; BD = CD
=> AD là trung trực của EF
Ta có: AM là trung trực của EF
AD là trung trực của EF
=> AM trùng AD
Vậy A;M;D thẳng hàng.
---> đpcm.
a: Xet ΔBMG và ΔCME có
MB=MC
góc BMG=góc CME
MG=ME
=>ΔBMG=ΔCME
b: Xet tứ giác BGCE co
M là trung điểm chung của BC và GE
=>BGCE là hình bình hành
=>BG//CE
c: Xét ΔABE co
AI,BG là trung tuyến
AI cắt BG tại F
=>F là trọng tâm
=>E,F,N thẳng hàng