Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: \(\begin{cases}x+2\ne0\\4-x>0\\6+x>0\end{cases}\)
ta có \(3\log_{\frac{1}{4}}\left(x+2\right)-3=3\log_{\frac{1}{4}}\left(4-x\right)+3\log_{\frac{1}{4}}\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right)-\log_{\frac{1}{4}}\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right).\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\frac{x+2}{4}=\left(4-x\right)\left(6+x\right)\)
giải pt tìm ra x
đối chiếu với đk của bài ta suy ra đc nghiệm của pt
ta có
\(\)\(y=\frac{1}{3}\log^3_{\frac{1}{2}}x+\log^2_{\frac{1}{2}}x-3\log_{\frac{1}{2}}x+1\)
Đặt =\(t=\log_{\frac{1}{2}}x\) ta có
\(y=\frac{1}{3}t^3+t^2-3t+1\)
với \(\frac{1}{4}\le x\le4\Leftrightarrow\frac{1}{4}\le\left(\frac{1}{2}\right)^t\le4\Leftrightarrow-2\le t\le2\)
thay vì tính GTLN,GTNN của hàm số y trên [1/4;4] ta tính GTLN,GTNN của hàm số trên [-2;2]
ta tính \(y'=t^2+2t-3\)
ta tính y'=0 suy ra t=1(loại);t=-3(loại)
ta tính y(2)=\(\frac{5}{3}\);y(-2)=\(\frac{-25}{3}\)
vậy GTNN của y=\(\frac{-25}{3}khi\log_{\frac{1}{2}}x=-2\Rightarrow x=4\)
hàm số đạt GTLN y=\(\frac{5}{3}\) khi \(\log_{\frac{1}{2}}x=2\Leftrightarrow x=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
ĐK: \(x\ge3\)
ta có:
\(\log_5^{\left(x+5\right)^{\frac{1}{2}}}+\log_5^{\sqrt{x-3}}=\log_5^{\sqrt{2x+1}}\Rightarrow\log_5^{\sqrt{\left(x+5\right)\left(x-3\right)}}=\log_5^{\sqrt{2x+1}}\)
suy ra \(\sqrt{\left(x+5\right)\left(x-3\right)}=\sqrt{2x+1}\Rightarrow\left(x+5\right)\left(x-3\right)=2x+1\Leftrightarrow x^2+2x-15=2x+1\Leftrightarrow x^2=16\Rightarrow x=\pm4\)
mà \(x\ge3\)
suy ra x=4 là nghiệm của pt
Theo đề
=> \(\left|2x-1\right|-\frac{1}{2}=\frac{4}{5}\) hoặc \(\left|2x-1\right|-\frac{1}{2}=-\frac{4}{5}\)
=> |2x - 1| = 13/10 hoặc |2x - 1| = -3/10 (vô lí, loại)
=> 2x - 1 = 13/10 hoặc 2x - 1 = -13/10
=> 2x = 23/10 hoặc 2x = -3/10
=> x = 23/20 hoặc x = -3/20
Vậy...
\(\left|\left|2x-1\right|-\frac{1}{2}\right|=\frac{4}{5}\)
TH1 : \(\left|2x-1\right|-\frac{1}{2}=\frac{4}{5}\Rightarrow\left|2x-1\right|=\frac{13}{10}\)
TH2 : \(\left|2x-1\right|-\frac{1}{2}=-\frac{4}{5}\Rightarrow\left|2x-1\right|=\frac{-3}{10}\) (loại )
Ta có :
\(\left|2x-1\right|=\frac{13}{10}\)
=> TH1 : \(2x-1=\frac{13}{10}\Rightarrow2x=\frac{23}{10}\Rightarrow x=\frac{23}{20}\)
TH2 : \(2x-1=\frac{-13}{10}\Rightarrow2x=\frac{-3}{10}\Rightarrow x=\frac{-3}{20}\)
Vậy x = \(\frac{23}{20}\)
hoặc x = \(\frac{-3}{20}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2010}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2009}{2010}\)
\(=\frac{1.2.3.4.5....2008.2009}{2.3.4....2009.2010}\)
\(=\frac{1}{2010}\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2010}\right)\)
\(=\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{2010}{2010}-\frac{1}{2010}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2009}{2010}=\frac{1.2.3....2009}{2.3.4....2010}=\frac{1}{2010}\)
=>-2x/3+1/6=2x/3-1/3
=>-4x+1=4x-2
=>-8x=-3
=>x=3/8
Hỏi j thế