K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

a. Xét tg ABH vag tg CAI

Ta có: góc BAH = góc ACI=90 độ - góc IAC

                     AB=AC

           góc AHB= góc CIA=90 độ

Nên tg ABH = tg CAI (cạnh huyền-cạnh góc vuông)
=> BH=AI
b. Ta có:BH=AI (chứng minh câu a)

AD+BH=IC+AI=AB=AC

=>\(BH^2+CI^2\) có giá trị không đổi

c. Ta có: CI vuông góc với AD =>CI là đường cao của tg ACD

             AM vuông góc với DC =>AM là đường cao của tg ACD

Mà 2 đường cao CI và AM cắt nhau tại N

=>DN là đường cao thứ 3 của tg ACD

Vậy DN vuông góc với AC

d. AM vuông góc với BM

AI vuông góc với BH

=>góc MBH=góc MAI

Xét tg BHM và tg AIM

Ta có:       BH=AI (chứng minh câu a)

      Góc MBH=góc MAI(cmt)

                 BM=AM

Nên tg BHM=tg AIM(g.c.g)

=>HM=IM(1)

Góc BMH=góc AMI(2)

Từ (1) và (2) ta có:

        Tg IMH vuông cân tại M

Vậy IM là tia phân giác của góc HIC

   

 

31 tháng 1 2017

pạn vẽ hình dùm mk vs

hình chiếu là hình j zậy

7 tháng 2 2019
51248369_244317383144466_7485296100417470464_n.png (384Ã512)Nhãn

Hình 

8 tháng 2 2019

B A C M D H I N

hÌNH NÈ

22 tháng 1 2019

a) xét tg ABH và tg CAI

Ta có : góc BAH = góc ACI= 90 độ - góc IAC

AB = AC

Góc AHB = góc CIA= 90 độ

nên tg ABH = tg CAI ( cạnh huyền - cạnh góc vuông )

=> BH = AI

b) ta có : BH = AI ( chứng minh câu a )

AD + BH = IC + AI = AB = AC

=> BH2 + CI2 = 2AM vuông

c) AM vuông góc với BM

AI vuông góc với BH

=> góc MBH = góc MAI

Xét tg BHM và tg AIM

ta có : BH = AI ( chứng minh câu a )

Góc MBH = góc MAI ( cmt )

BM = AM 

nên tg BHM = tg AIM (g.c.g)

=> HM = IM (1)

Góc BMH = góc AMI (2)

từ (1) và (2) ta có :

Tg IMH vuông cân tại M

=> IM là tai phân giác của HIC

Ai thấy đúng tk nha!!!

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

DO đó: ΔABE=ΔADE

b: Ta có: ΔABD cân tại A

mà AI là đường phân giác

nên I là trung điểm của BD

 

4 tháng 5 2019

MK CHỈ LÀM THÔI NHÉ, CÒN HÌNH THÌ BẠN TỰ VẼ

a) xét 2 tam giác vuông AIC và BHA có

   AB=AC(gt)

   \(\widehat{BAH}\)=\(\widehat{ACI}\)(vì cùng phụ với góc IAC)

=> BH=AI

b) \(BH^2+CI^2=AI^2+CI^2\)=\(AC^2=AB^2\)

c) ta thấy N là trực tâm của tam giác ADC

=> \(DN\perp AC\)

d) ta có: \(\Delta BHM=\Delta AIM\)(c.g.c)

=> HM=MI và \(\widehat{BMH}\)=\(\widehat{IMA}\) mà: \(\widehat{IMA}\)+\(\widehat{BMI}\)=90 độ => \(\widehat{BMH}\)+\(\widehat{BMI}\)=90 độ

=> tam giác HMI vuông cân

=> \(\widehat{HIM}\)=45 độ mà: \(\widehat{HIC}\)=90 độ => \(\widehat{HIM}\)=\(\widehat{MIC}\)=45 độ 

=> IM là phân giác của góc HIC