Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\) Với \(a+b+c=0\) thì \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)
\(b.\) Công thức tổng quát: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có:
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
\(\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x+1}-\frac{1}{x+2}\)
\(\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{x+2}-\frac{1}{x+3}\)
\(\frac{1}{\left(x+3\right)\left(x+4\right)}=\frac{1}{x+3}-\frac{1}{x-4}\)
\(\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+4}-\frac{1}{x+5}\)
Do đó, suy ra được: \(A=\frac{1}{x}-\frac{1}{x+5}=\frac{x+5-x}{x\left(x+5\right)}=\frac{5}{x\left(x+5\right)}\)
Bài 1:
\(a, \dfrac{1}{2}x(2-x)=x-\dfrac{1}{2}x^2\)
\(b, \dfrac{x-5}{5-x}\)\(=-\dfrac{x-5}{x-5}\)\(=-1\)
Bài 2:
\(a, x+y-x^2+y^2=(x+y)-(x^2-y^2)=(x+y)-(x-y)(x+y)\)
\(=(x+y)(1-x+y)\)
\(b, x(x-3)+3x-1=0 \)
\(⇔x^2-3x+3x-1=0 \)
\(⇔x^2-1=0 \)
\(⇔(x-1)(x+1)=0 \)
\(⇔\left[\begin{array}{} x-1=0\\ x+1=0 \end{array}\right.\)
\(⇔\left[\begin{array}{} x=1\\ x=-1 \end{array}\right.\)
Bài 3:
\(a,A=\dfrac{x(x+2)-x(x-2)+8}{x^2-4}:\dfrac{4}{x-2}\)
\(A=\dfrac{4x+8}{(x-2)(x+2)}.\dfrac{x-2}{4}\)
\(A=\dfrac{4(x+2)}{(x-2)(x+2)}.\dfrac{x-2}{4}\)
\(A=1\)
\(b, B=(1-\dfrac{a+b}{a-b})(1-\dfrac{2b}{a+b})\)
\(B=\dfrac{-2b}{a-b}.\dfrac{a-b}{a+b}\)
\(B=\dfrac{-2b}{a+b}\)
Bài 4:
\(C=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)\)
\(C=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)\)
\(C=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)\)
\(C=(2^8-1)(2^8+1)(2^{16}+1)(2^{32}+1)\)
\(C=(2^{16}-1)(2^{16}+1)(2^{32}+1)\)
\(C=(2^{32}-1)(2^{32}+1)=2^{64}-1\)
b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
<=>\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)\( \left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
mà \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)
nên phương trình đó xảy ra khi và chỉ khi x+2009=0
<=>x=-2009
Vậy phương trình có no là x=-2009
b) \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)\)=
\(\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\) \(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\)\(\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\) \(\left(x+2009\right)\)\(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)= 0
\(\Leftrightarrow\)\(x+2009=0\)
( vì \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\) \(\ne0\))
\(\Leftrightarrow\) \(x=-2009\)
Vậy x = -2009
phân tích nhân tử đi -_-, làm ra dài nên lười viết, chỉ cho cách làm đáy
ra đc ko?