Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7})< 1\frac{6}{7}$
$x(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7})< \frac{13}{7}$
$x(1-\frac{1}{7})< \frac{13}{7}$
$x.\frac{6}{7}< \frac{13}{7}$
$x< \frac{13}{7}: \frac{6}{7}=\frac{13}{6}$
Vì $x$ là số nguyên nên $x\leq 2$
Vậy $x$ là các số nguyên sao cho $x\leq 2$.
a, Ta có \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)
<=> \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}-\frac{x-4}{2008}=0\)
<=> \(\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)-\left(\frac{x-3}{2009}-1\right)-\left(\frac{x-4}{2008}-1\right)=0\)
<=>\(\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
<=> \(\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=> \(x-2012=0=>x=2012\)
b, \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2x-1\right)\left(2x+1\right)}=\frac{49}{99}\)
=>\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2x-1\right)\left(2x+1\right)}=2\cdot\frac{49}{99}\)
=>\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2x-1}-\frac{1}{2x+1}=\frac{98}{99}\)
=>\(1-\frac{1}{2x+1}=\frac{98}{99}\)
=>\(\frac{2x}{2x+1}=\frac{98}{99}\)
=>2x = 98
=>x = 49
bài 1
[(x+2)/1010]+ [(x+2)/1111]= [(x+2)/1212]+[(x+2)/1313]
=>[(x+2)/1010]+[(x+2)/1111] - [(x+2)/1212]-[(x+2)/1313] = 0
=>(x+2).[(1/1010)+(1/1111)-(1/1212)-(1/1313)=0
Vì [(1/1010)+(1/1111)-(1/1212)-(1/1313)] khác 0
=>x+2=0
=>x=-2
ta nhân vế trái vs 2:
\(\frac{2}{1.3}+\frac{2}{3.5}+......+\frac{2}{x\left(x+2\right)}=\frac{8}{17}\)
\(\frac{1}{ }-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{8}{17}\)
\(1-\frac{1}{x+2}=\frac{8}{17}\)
\(\Rightarrow17\left(x+1\right)=8\left(x+2\right)\)
\(\Rightarrow17x+17=8x+16\)
\(\Rightarrow17x-8x=-17+16\)
\(\Rightarrow9x=-1\)
\(\Rightarrow x=\frac{-1}{9}\)
2(1/1.3+1/3.5+1/5.7+...+1/x(x+2) )=16/34 *2
2/1.3+2/3.5+2/5.7+...+2/x(x+2)=32/34=16/17
1/1-1/3+1/3-1/5+1/5-1/7+...+1/x-1/x+2=16/17
1/1-1/x+2=16/17
1/x+2=1/1-16/17
1/x+2=1/17
suy ra x+2=17
x=17=2=15
Ta có : \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{16}{34}\)
=> \(2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}\right)=2.\frac{16}{34}\)
=> \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{16}{17}\)
=> \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)
=> \(1-\frac{1}{x+2}=\frac{16}{17}\)
=> \(\frac{1}{x+2}=1-\frac{16}{17}=\frac{1}{17}\)
=> \(x+2=17\)
=> \(x=15\)
=>1/1-1/3+1/3-1/5+1/5-1/7+....+1/x-1/(x+2)=16/34
=>1/1-1/(x+2)=16/34
=>1/(x+2)=1-16/34
=>1/(x+2)=9/17
=>(x+2).9=17
=>(x+2)=17/9
=>x=17/9-2
=>x=-1/9(không là số tự nhiên)
vậy không có số tự nhiên x thoả mãn điều kiện bài toán