Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{5+2\sqrt{5}+1}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\)
Ghi nhầm
\(\sqrt{3}+1<\sqrt{4}+1=3\)
Vậy 3 > \(\sqrt{3}+1\)
\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{6+2\sqrt{5}}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}\)
Vì \(\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\Rightarrow\sqrt{\sqrt{6+\sqrt{20}}}< \sqrt{1+\sqrt{6}}\)
Cách 1: Theo casio ta có:
+ \(\sqrt{3}+\sqrt{7}\approx4,378\)
+ \(\sqrt{19}\approx4,36\)
=> \(\sqrt{3}+\sqrt{7}>\sqrt{19}\)
Cách 2: Ta có: \(\left(\sqrt{3}+\sqrt{7}\right)^2=3+7+2.\sqrt{21}=10+\sqrt{84}\)
\(\left(\sqrt{19}\right)^2=19=10+\sqrt{81}\)
Vì \(10+\sqrt{84}>10+\sqrt{81}\)
=> \(\left(\sqrt{3}+\sqrt{7}\right)^2>\left(\sqrt{19}\right)^2\)
=> \(\sqrt{3}+\sqrt{7}>\sqrt{19}\)
hay cái gì ? cái đó lớp 1 đã biết làm ; khỏi phải chỉ Dennis cũng biết làm cách đó
Lời giải:
\(A=\sqrt{2017}-\sqrt{2016}=\frac{2017-2016}{\sqrt{2017}+\sqrt{2016}}=\frac{1}{\sqrt{2017}+\sqrt{2016}}\)
\(B=\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
Dễ thấy \(0< \sqrt{2017}+\sqrt{2016}< \sqrt{2018}+\sqrt{2017}\Rightarrow \frac{1}{\sqrt{2017}+\sqrt{2016}}>\frac{1}{\sqrt{2018}+\sqrt{2017}}\)\(\Rightarrow A>B\)
ta có \(\left(\sqrt{5\sqrt{3}}\right)^4=75\)
\(\left(\sqrt{3\sqrt{5}}\right)^4=45\)
\(\Rightarrow\sqrt{5\sqrt{3}}>\sqrt{3\sqrt{5}}\left(75>45\right)\)
tao đây