K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

4300=(43)100=64100

3400=(34)100=81100

0<64<81 nên 64100<81100 nên 4300<3400

3 tháng 8 2016

\(4^{300}=4^{3^{100}}=64^{100}\)

\(3^{400}=3^{4^{100}}=81^{100}\)

mà 64 < 81

Vậy 4^300 < 3^400

27 tháng 6 2016

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{4+9-4}\)

                                                   \(=\frac{2x-2+3y-6-x+3}{9}=\frac{50-5}{9}=5\)

Suy ra: \(x-1=10\Rightarrow x=11\)

           \(y-2=15\Rightarrow y=17\)

             \(z-3=20\Rightarrow z=23\)

27 tháng 6 2016

- Cám ơn bạn nhìu nha

8 tháng 11 2016

3400=(32)200=9200

2600=(23)200=8200

Vì 9200>8200

nên 3400>2600

8 tháng 11 2016

Ta có: \(3^{400}=\left(3^2\right)^{200}=9^{200}\)(1)

\(2^{600}=\left(2^3\right)^{200}=8^{200}\)(2)

Từ (1) và (2) \(\Rightarrow3^{400}>2^{600}\)

13 tháng 10 2018

1;\(7^6+7^5-7^4=7^4\left(49+7-1\right)=7^4.55=7^4.5.11⋮11\)

so sánh

a) 3200và 2300

Ta có :

2300 = (23)100 = 8100

3200 = ( 32)100 = 9100

2300 < 3200 

b) 912 và 268

Ta có :

912 = ( 93)4 = 7294

268 = ( 262)= 6764

912>268

11 tháng 9 2018

a, Ta có:

\(3^{200}\) =  \(\left(3^2\right)^{100}\) = \(9^{100}\)

\(2^{300}\) = \(\left(2^3\right)^{100}\)\(8^{100}\)

Vì 8 < 9 => \(8^{100}\) < \(9^{100}\) 

Hay \(3^{200}\) < \(2^{300}\)

b, Ta có:

\(9^{12}\) = \(\left(9^3\right)^4\) = \(729^4\)

\(26^8\) = \(\left(26^2\right)^4\) = \(676^4\) 

Vì 729 > 676 => \(729^4\) < \(676^4\)

Hay \(9^{12}\) < \(26^8\)

15 tháng 3 2020

a)Ta có : \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)(đpcm)

b) Ta có : \(\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}>25-\frac{1}{\sqrt{6}}=24-\frac{1}{\sqrt{6}}+1=\sqrt{576}-\frac{1}{\sqrt{6}}+1\)

\(\Rightarrow\sqrt{625}-\frac{1}{\sqrt{5}}>\sqrt{576}-\frac{1}{\sqrt{6}}+1\)(đpcm)

24 tháng 8 2016

1) Áp dụng a/b < 1 <=> a/b < a+n/b+n (a,b,n thuộc N*)

a/b = 1 <=> a/b = a+n/b+n (a,b,n thuộc N*)

a/b > 1 <=> a/b > a+n/b+n (a,b,n thuộc N*)

+ Với a/b < 1 <=> a/b < a+1/b+1

+ Với a/b = 1 <=> a/b = a+1/b+1

+ Với a/b > 1 <=> a/b > a+1/b+1

2) lm tương tự bài 1

24 tháng 8 2016

1) Trường hợp a cũng là nguyên duơng 
Xét a<b và a>b. 
Xét a<b trước, ta có: 
1-a/b=(b-a)/a..............(1) 
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1... 
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b