K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2020

ta có

M= 1+1/2^2+1/3^2+...+1/50^2

vì 1=1

1/2^2<1/1*2

1/3^2<1/2*3

.....

1/50^2<1/49*50

=> M< 1+1/1*2+1/2*3+...1/49*50

=> M< (1/1*1+1/1*2+1/2*3+...+1/49 *50)

=> M<( 1/1-1/1+1/1-1/2+...+1/49-1/50)

=> M< (1-1/50)

=> M< 49/50

ta có 49/50= 98/100 và 98/100<173/100=> M<173/100

5 tháng 2 2020

BÀI 1:

\(P=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{2^{100}-1}\)

\(\Leftrightarrow A=1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{2^{100}-1}+\frac{1}{2^{100}}-\frac{1}{2^{100}}\)

\(\Leftrightarrow A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+........+\left(\frac{1}{2^{99}+1}+.......+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>1+\frac{1}{2}+\frac{1}{2^2}\cdot2+\frac{1}{2^3}\cdot2^2+........+\frac{1}{2^{100}}\cdot2^{99}-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>1+\frac{1}{2}\cdot100-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>51-\frac{1}{2^{100}}>51-1=50\)

\(\Rightarrow DPCM\)

BÀI 2 :

TA CÓ: \(A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{100}}\)VÀ \(B=2\)

= > CẦN CHỨNG MINH \(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)NHƯ THẾ NÀO SO VỚI 1

ĐẶT \(C=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)

\(\Leftrightarrow2C=1+\frac{1}{2}+.......+\frac{1}{2^{99}}\)

\(\Leftrightarrow2C-C=\left(1+\frac{1}{2}+.....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+.....+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow C=1-\frac{1}{2^{100}}>1\)

\(\Rightarrow A>B\)

18 tháng 3 2019

http://lovelove.xtreemhost.com/nguhaykhong.html?i=1

19 tháng 4 2017

A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

A < 1 - \(\frac{1.}{100}\)

A < \(\frac{99}{100}< \frac{199}{100}\)

=> A < \(\frac{199}{100}\)

b,

S = \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}\)

S = \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{9.11}{10.10}\)

S = \(\frac{1.3.2.4.3.5.4.6.5.7...9.11}{2.2.3.3.4.4...10.10}\)

S = \(\frac{1.2.3^2.4^2.5^2...9^2.10.11}{2^2.3^3.4^2...10^2}\)

S = \(\frac{1.11}{2.10}\)

S = \(\frac{11}{20}\)

24 tháng 6 2020

 P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\) 

P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)

P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)

P\(=\frac{1.51}{50.2}=\frac{51}{100}\)

20 tháng 8 2016

A=(\(\frac{1}{2^2}\) -1).( \(\frac{1}{3^2}\)-1)............(\(\frac{1}{100^2}\) -1)=\(-\frac{\left(1.2.3.4....99\right)\left(1.2.3.4....101\right)}{\left(1.2.3.4....100\right)\left(1.2.3.4....100\right)}\)=\(\frac{-101}{100}\)

20 tháng 8 2016

ko hỉu lắm

13 tháng 7 2015

a,\(\frac{-3}{1.3}+\frac{-3}{3.5}+....+\frac{-3}{97.99}\)

= -3.\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)

=\(\frac{-3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\right)\)

=\(\frac{-3}{2}\left(1-\frac{1}{99}\right)\)

=\(\frac{-3}{2}.\frac{98}{99}\)

=\(\frac{49}{-33}\)>\(\frac{49}{-20}\)