K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

4 tháng 3 2018

a, Có : (1/60)^200 = [(1/2)^4]^200 = (1/2)^800

Vì 0 < 1/2 < 1 nên (1/2)^800 > (1/2)^1000

=> (1/16)^200 > (1/2)^1000

Tk mk nha

4 tháng 3 2018

a) \(\left(\frac{1}{16}\right)^{200}=\left(\frac{1}{2}\right)^{800}< \left(\frac{1}{2}\right)^{1000}\)

28 tháng 9 2016

Ta có \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2014^2}\right)\)

\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2014^2-1}{2014^2}\right)\)

\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(2014-1\right)\left(2014+1\right)}{2014^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2013.2015}{2014.2014}\)

\(=\frac{1.2...2013}{2.3...2014}.\frac{3.4...2015}{2.3...2014}\)

\(=\frac{1}{2014}.\frac{2015}{2}\)

\(=\frac{2015}{2014.2}>\frac{1}{2}\)hay -A>1/2

=>\(A< \frac{-1}{2}\)hay A<B

7 tháng 8 2018

b) \(9^5=3^{2\cdot5}=3^{10}\)

\(27^3=3^{3\cdot3}=3^9\)

=> tự kết luận

7 tháng 8 2018

c) \(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2}^3\right)^6=\left(\frac{1}{2}\right)^{18}\)

\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2}^5\right)^4=\left(\frac{1}{2}\right)^{20}\)

=> tự kết luận

7 tháng 8 2018

b) Ta có: \(9^5=\left(3^2\right)^5=3^{10}\) 

             \(27^3=\left(3^3\right)^3=3^9\)

Vì 10 > 9 => 310 > 39

Vậy 95 > 273

7 tháng 8 2018

1. So sánh : 

b) 9^5 và 27^3 

9^5 = ( 3^2 )^5 = 3^10

27^3 = ( 3^3 )^3  = 3^9 

Vì 3^10 > 3^9 => 9^5 > 27^3 

Vậy 9^5 > 27^3 

c) \(\left(\frac{1}{8}\right)^6\)và \(\left(\frac{1}{32}\right)^4\)

\(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2}\right)^{3.6}=\left(\frac{1}{2}\right)^{18}\)

\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2}\right)^{5.4}=\left(\frac{1}{2}\right)^{20}\)

Vì ( 1/2)^18 < (1/2)^20 => (1/8)^6 < (1/32)^4 

Vậy (1/8)^6 < (1/32)^4

làm được bài 1:

TA CÓ: \(\left(\frac{1}{16}\right)^{200}=\left(\frac{1}{16}\right)^{200}\)

            \(\left(\frac{1}{2}\right)^{1000}=\left(\frac{1}{2}\right)^{5.200}=\left(\frac{1^5}{2^5}\right)^{200}=\left(\frac{1}{32}\right)^{200}\)

vì mũ số bằng nhau nên ta so sánh phân số. Vì \(\frac{1}{16}>\frac{1}{32}\)nên \(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{32}\right)^{200}\)do đó\(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{2}\right)^{1000}\)

18 tháng 9 2016

a)Ta có:

 \(\left(\frac{1}{2}\right)^{27}=\left[\left(\frac{1}{2}\right)^3\right]^9=\left(\frac{1}{8}\right)^9\)

\(\left(\frac{1}{3}\right)^{18}=\left[\left(\frac{1}{3}\right)^2\right]^9=\left(\frac{1}{9}\right)^9\)

Vì \(\left(\frac{1}{8}\right)^9>\left(\frac{1}{9}\right)^9\) nên \(\left(\frac{1}{2}\right)^{27}>\left(\frac{1}{3}\right)^{18}\)

 

9 tháng 8 2017

Ta có : \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{19}{20}\)

\(=\frac{1.2.3.....19}{2.3.4.....20}\)

\(=\frac{1}{20}>\frac{1}{21}\)

9 tháng 8 2017

SORRY EM MỚI LỚP 6