Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[2^4-4^2\right]\)
\(=\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[16-16\right]\)
\(=\left[2^{17}+16^2\right]\left[9^{15}-3^{15}\right]\cdot0=0\)
\(b,\left[8^{2017}-8^{2015}\right]\cdot\left[8^{2014}\cdot8\right]\)
\(=8^{2015}\left[8^2-1\right]\cdot8^{2015}\)
\(=8^{2015}\cdot63\cdot8^{2015}=8^{4030}\cdot63\)sửa lại câu b , có vấn đề rồi
\(c,\frac{2^8+8^3}{2^5\cdot2^3}=\frac{2^8+\left[2^3\right]^3}{2^5\cdot2^3}=\frac{2^8+2^9}{2^8}=\frac{2^8\left[1+2\right]}{2^8}=3\)
2.a, \(2^6=\left[2^3\right]^2=8^2\)
Mà 8 = 8 nên 82 = 82 hay 26 = 82
b, \(5^3=5\cdot5\cdot5=125\)
\(3^5=3\cdot3\cdot3\cdot3\cdot3=243\)
Mà 125 < 243 nên 53 < 35
c, 26 = [23 ]2 = 82
Mà 8 > 6 nên 82 > 62 hay 26 > 62
d, 7200 = [72 ]100 = 49100
6300 = \(\left[6^3\right]^{100}\)= 216100
Mà 49 < 216 nên 49100 < 216100 hay 7200 < 6300
\(C=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)
\(=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2018-\left(2018^{2019}+2018^{2018}+...+2018\right)-1\)
\(=\left(2018^{2020}+2018^{2019}+...+2018^3+2018^2\right)-\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)+1\)\(=2018^{2020}-2018+1\)
\(=2018^{2020}-2017\)
Câu 2: A = \(^{1+2+2^2+2^{ }^3+...+2^{2017}}\)
2A = \(2+2^2+2^3+...+2^{2018}\)
Suy ra 2A - A =\(2^{2018}-1\) Do đó A < B
1. Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=t\Rightarrow a=2016t,b=2017t,c=2018t\)
\(\left(a-c\right)^3=\left(2016t-2018t\right)^3=\left(-2t\right)^3=-8t^3\)
\(8\left(a-b\right)^2\left(b-c\right)=8\left(2016t-2017t\right)^2\left(2017t-2018t\right)=8.\left(-t\right)^2.\left(-t\right)=-8t^3\)
Vậy \(\left(a-c\right)^3=8\left(a-b\right)^2\left(b-c\right)\)
Bài 2 :2
a) 3200 và 2300
Ta có :
3200 = ( 32 )100 = 9100
2300 = ( 23 )100 = 8100
Vì 9100 > 8100 Nên 3200 > 2300
b) 1255 và 257
Ta có :
1255 = ( 53 )5 = 515
257 = ( 52 )7 = 514
Vì 515 > 514 ( 15 > 14 )
Nên 1255 > 257
Tương tự ....
Bài 2 :
a) 3200 và 2300
Ta có :
3200 = ( 32 )100 = 9100
2300 = ( 23 )100 = 8100
Vì 9100 > 8100 nên 3200 > 2300
bt mỗi câu này thôi
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
a) \(\left(\frac{3}{5}\right)^{15}:\left(\frac{9}{25}\right)^5=\left(\frac{3}{5}\right)^{15}:\left(\left(\frac{3}{5}\right)^2\right)^5=\left(\frac{3}{5}\right)^{15}:\left(\frac{3}{5}\right)^{10}=\left(\frac{3}{5}\right)^5\)
b) \(5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2:3=5-1+\frac{1}{9}:3=4+\frac{1}{27}=4\frac{1}{27}\)
c) \(2^3+3.\left(\frac{1}{2}\right)^0+\left(-2\right)^2:\frac{1}{2}.8=8+3.1+4:\frac{1}{2}.8=8+3+64=75\)
d) \(\left(-1\right)^{-1}-\left(-\frac{3}{5}\right)^0+\left(\frac{1}{2}\right)^{2:2}=-1-1+\left(\frac{1}{2}\right)^1=-2+\frac{1}{2}=-\frac{3}{2}\)
đăng từng câu nhé bạn
chứ kiểu vậy thì ko có ai giải cho bạn đâu
a. ta có \(3^{102}=3^{3\times34}=27^{34}>25^{34}=5^{2\times34}=5^6\text{ vậy }3^{102}>5^{68}\)
b. ta có \(C=1+2+..+2^{2017}\text{ nên }2C=2+2^2+...+2^{2018}\)
lấy hiệu ta có : \(C=\left(2+2^2+..+2^{2018}\right)-\left(1+2+..+2^{2017}\right)=2^{2018}-1< 2^{2018}\)
Vậy \(C< 2^{2018}\)
c. dễ thấy \(C>\frac{1}{2}=F\)
d. ta có \(5G=1+\frac{1}{5}+..+\frac{1}{5^{2016}}\Rightarrow4G=1-\frac{1}{5^{2017}}\)hay \(G=\frac{1}{4}-\frac{1}{4\times5^{2017}}< \frac{1}{4}=H\text{ hay }G< H\)