Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) A = 2009 . 2011
A = 2009 . ( 2010 + 1 )
A = 2009 . 2010 + 2009
B = 20102
B = 2010 . 2010
B = ( 2009 + 1 ) . 2010
B = 2009 . 2010 + 2010
Mà 2009 . 2010 + 2009 < 2009 . 2010 + 2010
Vậy A < B
d tương tự
c) 52n và 25n
52n = 25n
25n = 32n
Mà 25n < 32n
Vậy 52n < 25n
a) A = 20 + 21 + 22 + 23 + ............ + 22010
2A = 21 + 22 + 23 + 24 + .............. + 22011
2A - A = ( 21 + 22 + 23 + 24 + ............... + 22011 ) - ( 20 + 21 + 22 + 23 + ................ + 22010 )
A = 22011 - 1
Mà 22011 - 1 = 22011 - 1
Vậy A = B
Có 333^444=(333^4)^111 và 444^333=(444^3)^111
Như vậy ta cần so sánh 333^4 và 444^3:
Vì 333^4/444^3=3^4*111^4/(4^3*111^3)=3^4*11... nên 333^4>444^3 do đó
333^444>444^333
a) \(A=2^0+2^1+2^2+2^3+...+2^{2010}\) và \(B=2^{2011}-1\)
\(2A=2^1+2^2+2^3+....+2^{2011}\)
\(2A-A=\left(2^1+2^2+2^3+....+2^{2011}\right)-\left(2^0+2^1+2^2+2^3+...+2^{2010}\right)\)
\(A=2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\)nên \(A=B\)
c) \(A=10^{30}\)và \(B=2^{100}\)
\(A=10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(B=2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(1000< 1024\)nên \(10^{30}< 2^{100}\)
e) \(A=3^{350}\)và \(B=5^{300}\)
\(A=3^{350}=\left(3^7\right)^{50}=2187^{50}\)
\(B=5^{300}=\left(5^6\right)^{50}=15625^{50}\)
Vì \(2187< 15625\)nên \(3^{350}< 5^{300}\)
a, \(A=2^0+2^1+2^2+...+2^{2010}\)
\(=>2A=2^1+2^2+2^3+...+2^{2011}\)
\(=>2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(=>2A=2^{2011}-2^0=2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\)
\(=>A=B\)
a) Ta có : A=1+2+22+...+22010
2A=2+22+23+...+22011
\(\Rightarrow\) 2A-A=(2+22+23+...+22011)-(1+2+22+...+22010)
\(\Rightarrow\) A=22011-1
Mà B=22011-1
\(\Rightarrow\)A=B
Vậy A=B.
b) Ta có : A=2009.2011
B=20102=2010.2010
\(\Rightarrow\)A=2009.2010+2009
B=2009.2010+2010
Vì 2009<2010 nên 2009.2010+2009<2009.2010+2010
hay A<B
Vậy A<B.
Gọi 2^0 + 2^1 + 2^2 + 2^3 +...+2^2010 là a
Ta có:
A= 2^0 + 2^1 + 2^2 + 2^3 +...+2^2010
2A=21+22+23+...+22010+22011
2A-A=22011-1
A=22011-1
=>2^0 + 2^1 + 2^2 + 2^3 +...+2^2010=B
a) A= 2^0+2^1+2^2+2^3+...+2^2010
A=1+2^1+2^2+2^3+...+2^2010
2A=2+2^2+2^3+2^4+...+2^2011
2A-A=(2+2^2+2^3+2^4+...+2^2011)+(1+2^1+2^2+2^3+...+2^2010)
A=2^2011-1
c)5^2n và 2^5n
Ta có: 5^2n=10^n
2^5n=10^n
Vì 10^n = 10^n nên 5^2n=2^5n