K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2015

a) A= 2^0+2^1+2^2+2^3+...+2^2010

A=1+2^1+2^2+2^3+...+2^2010

2A=2+2^2+2^3+2^4+...+2^2011

2A-A=(2+2^2+2^3+2^4+...+2^2011)+(1+2^1+2^2+2^3+...+2^2010)

A=2^2011-1

c)5^2n và 2^5n

Ta có: 5^2n=10^n

          2^5n=10^n

Vì 10^n = 10^n nên 5^2n=2^5n

9 tháng 1 2018

b) A = 2009 . 2011 

    A = 2009 . ( 2010 + 1 )

    A = 2009 . 2010 + 2009

B = 20102

B = 2010 . 2010

B = ( 2009 + 1 ) . 2010

B = 2009 . 2010 + 2010

Mà 2009 . 2010 + 2009 < 2009 . 2010 + 2010

Vậy A < B

d tương tự

c) 52n và 25n

52n = 25n

25n = 32n

Mà 25< 32n

Vậy 52n < 25n

a) A = 2+ 2+ 2+ 2+ ............ + 22010

2A = 2+ 2+ 2+ 24 + .............. + 22011

2A - A = ( 2+ 2+ 2+ 24 + ............... + 22011 ) - ( 2+ 2+ 22 + 2+ ................ + 22010 )

A = 22011 - 1

Mà 22011 - 1 = 22011 - 1

Vậy A = B

9 tháng 1 2018

b) Ta có A=2009.2011=2009(2010+1)=2009.2010+2009

              B=20102=2010.2010=(2009+1)2010=2009.2010+2010

Mà 2009.2010+2009<2009.2010+2010

Nên A<B

3 tháng 11 2021

Có 333^444=(333^4)^111 và 444^333=(444^3)^111 
Như vậy ta cần so sánh 333^4 và 444^3: 
Vì 333^4/444^3=3^4*111^4/(4^3*111^3)=3^4*11... nên 333^4>444^3 do đó 
333^444>444^333 

15 tháng 7 2017

a) \(A=2^0+2^1+2^2+2^3+...+2^{2010}\) và  \(B=2^{2011}-1\)

\(2A=2^1+2^2+2^3+....+2^{2011}\)

\(2A-A=\left(2^1+2^2+2^3+....+2^{2011}\right)-\left(2^0+2^1+2^2+2^3+...+2^{2010}\right)\)

\(A=2^{2011}-1\)

Vì \(2^{2011}-1=2^{2011}-1\)nên \(A=B\)

c) \(A=10^{30}\)và \(B=2^{100}\)

\(A=10^{30}=\left(10^3\right)^{10}=1000^{10}\)

\(B=2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

Vì \(1000< 1024\)nên \(10^{30}< 2^{100}\)

e) \(A=3^{350}\)và  \(B=5^{300}\)

\(A=3^{350}=\left(3^7\right)^{50}=2187^{50}\)

\(B=5^{300}=\left(5^6\right)^{50}=15625^{50}\)

Vì \(2187< 15625\)nên \(3^{350}< 5^{300}\)

17 tháng 7 2017

Thank you.

3 tháng 12 2018

Mk nghỉ giải lao sau đó mk lm cho

30 tháng 11 2019

a, \(A=2^0+2^1+2^2+...+2^{2010}\)

\(=>2A=2^1+2^2+2^3+...+2^{2011}\)

\(=>2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)

\(=>2A=2^{2011}-2^0=2^{2011}-1\)

Vì \(2^{2011}-1=2^{2011}-1\)

\(=>A=B\)

30 tháng 11 2019

a) Ta có : A=1+2+22+...+22010

              2A=2+22+23+...+22011

\(\Rightarrow\)  2A-A=(2+22+23+...+22011)-(1+2+22+...+22010)

\(\Rightarrow\)       A=22011-1

Mà B=22011-1

\(\Rightarrow\)A=B

Vậy A=B.

b) Ta có : A=2009.2011

               B=20102=2010.2010

\(\Rightarrow\)A=2009.2010+2009

         B=2009.2010+2010

Vì 2009<2010 nên 2009.2010+2009<2009.2010+2010

hay A<B

Vậy A<B.

17 tháng 11 2015

Gọi 2^0 + 2^1 + 2^2 + 2^3 +...+2^2010 là a

Ta có:

A= 2^0 + 2^1 + 2^2 + 2^3 +...+2^2010

2A=21+22+23+...+22010+22011

2A-A=22011-1

A=22011-1

=>2^0 + 2^1 + 2^2 + 2^3 +...+2^2010=B