K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Lời giải:
$1990^{10}+1990^9=1990^9(1990+1)=1991.1990^9< 1991.1991^9=1991^{10}$

-----------------------

$10^{10}=(10^2)^5=100^5=(2.50)^5=2^5.50^5=32.50^5< 48.50^5$

------------------------

$11^{1979}< 11^{1980}=(11^3)^{660}=1331^{660}$
$37^{1320}=(37^2)^{660}=1369^{660}> 1331^{660}$

$\Rightarrow 11^{1979}< 37^{1320}$

Ta có: \(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\)

\(37^{1321}>37^{1320}=\left(37^2\right)^{660}=1369^{660}\)

Vì \(1369^{660}>1331^{660}\)Nên \(11^{1979}< 37^{1321}\)

ta có 11^1979<11^1980=(11^3)^660=1331^660

mà 37^1320=(37^2)^660=1369^660

mà 1331^660>1369^660 vậy 11^1979<37^1320

P/s: ^ là mũ nhé

1 tháng 1 2017

câu 1 >

câu 2 <

câu 3 >

câu 4 >

caua <

1 tháng 1 2017

\(202^{303}=\left(101.2\right)^{303}=101^{606}\)

\(303^{202}=\left(101.3\right)^{202}=101^{606}\)

Vì 101606 = 101606 nên 202303 = 303202

27 tháng 9 2019

9920và999910

9920=980110<999910

9920<999910

30 tháng 5 2015

ta có A= 1990^10+1990^9

suy ra A=1990^9 . ( 1990 + 1) = 1990^9  . 1991 mà ta có B= 1991^10 = 1991^9 . 1991

vì 1990^9 < 1991^9 suy ra A<B.

30 tháng 5 2015

bạn xem câu hỏi tương tự ấy 

**** cho mjk nhé

5 tháng 7 2016

a) \(\left(\frac{1}{243}\right)^9=\left(\frac{1}{3^5}\right)^9=\frac{1}{3^{45}}\)

\(\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{81}\right)^{13}=\left(\frac{1}{3^4}\right)^{13}=\frac{1}{3^{52}}< \frac{1}{3^{45}}=\left(\frac{1}{243}\right)^9\Rightarrow\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{243}\right)^9\)

b) 199010 + 19909

= 19909 ( 1990 + 1 )

= 19909 . 1991 < 199110 = 19919 . 1991

Vậy 199010 + 19909 < 199110

18 tháng 7 2016

Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)

=> \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)

=> \(B< \frac{10^{1991}+10}{10^{1992}+10}\)

=> \(B< \frac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)

=> \(B< \frac{10^{1990}+1}{10^{1991}+1}=A\)

=> B < A

18 tháng 7 2016

Bài này mình biết làm nè , nhưng ... dài dòng lắm 

25 tháng 4 2019

Đặt \(A=\frac{10^{1990}+1}{10^{1991}+1}\)

\(\Rightarrow10A=\frac{10\cdot(10^{1990}+1)}{10^{1991}+1}\)

\(=\frac{10^{1991}+10}{10^{1991}+1}=\frac{10^{1991}+1+9}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)

Đặt \(B=\frac{10^{1991}+1}{10^{1992}+1}\)

\(\Rightarrow10B=\frac{10\cdot(10^{1991}+1)}{10^{1992}+1}=\frac{10^{1992}+10}{10^{1992}+1}=\frac{10^{1992}+1+9}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)

Tự so sánh được rồi -_-

25 tháng 4 2019

sao ra được 1+ gì gì đó vậy bạn

\(A=\frac{10^{1990}+1}{10^{1991}+1}\Rightarrow10A=\frac{10^{1991}+10}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)

\(B=\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow10B=\frac{10^{1992}+10}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)

Vì \(10^{1991}< 10^{1992}\Rightarrow1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)

\(\Rightarrow\frac{10^{1990}+1}{10^{1991}+1}>\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow A>B\)

Ta có : \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)

Mà : \(\frac{10^{1991}+1+9}{10^{1992}+1+9}=\frac{10^{1991}+10}{10^{1992}+10}\)

\(=\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)

\(=\frac{10^{1990}+1}{10^{1991}+1}\)

\(\Rightarrow B< A\)