\(\left(\frac{27}{64}\right)^{15}và\left(\frac{81}{256}\right)^{10}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2015

\(\left(\frac{27}{64}\right)^{15}=\frac{\left(3^3\right)^{15}}{\left(2^6\right)^{15}}=\frac{3^{45}}{2^{90}}=\left(\frac{3}{2^2}\right)^{45}\)

\(\left(\frac{81}{256}\right)^{10}=\frac{\left(3^4\right)^{10}}{\left(2^8\right)^{10}}=\frac{3^{40}}{2^{80}}=\left(\frac{3}{2^2}\right)^{40}\)

Do \(\left(\frac{3}{2^2}\right)^{45}<\left(\frac{3}{2^2}\right)^{40}\Rightarrow\left(\frac{27}{64}\right)^{15}<\left(\frac{81}{256}\right)^{10}\)

19 tháng 3 2020

a) \(\left(-\frac{3}{4}\right)^{3x-1}=\frac{-27}{64}\)

\(\Leftrightarrow\left(-\frac{3}{4}\right)^{3x-1}=\left(-\frac{3}{4}\right)^3\)

\(\Leftrightarrow3x-1=3\)

\(\Leftrightarrow3x=4\)

\(\Leftrightarrow x=\frac{4}{3}\)

b) Đề sai ! Sửa :

\(\left(\frac{4}{5}\right)^{2x+5}=\frac{256}{625}\)

\(\Leftrightarrow\left(\frac{4}{5}\right)^{2x+5}=\left(\frac{4}{5}\right)^4\)

\(\Leftrightarrow2x+5=4\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=-\frac{1}{2}\)

c) \(\frac{\left(x+3\right)^5}{\left(x+5\right)^2}=\frac{64}{27}\)

\(\Leftrightarrow\left(x+3\right)^3=\left(\frac{4}{3}\right)^3\)

\(\Leftrightarrow x+3=\frac{4}{3}\)

\(\Leftrightarrow x=-\frac{5}{3}\)

d) \(\left(x-\frac{2}{15}\right)^3=\frac{8}{125}\)

\(\Leftrightarrow\left(x-\frac{2}{15}\right)^3=\left(\frac{2}{15}\right)^3\)

\(\Leftrightarrow x-\frac{2}{15}=\frac{2}{15}\)

\(\Leftrightarrow x=\frac{4}{15}\)

27 tháng 7 2016

\(\left(\frac{1}{27}\right)^{23}=\frac{1^{23}}{27^{23}}=\frac{1}{\left(3^3\right)^{23}}=\frac{1}{3^{69}}\)

\(\left(\frac{1}{81}\right)^{16}=\frac{1^{16}}{81^{16}}=\frac{1}{\left(3^4\right)^{16}}=\frac{1}{3^{64}}\)

Vì 369 > 364

\(\frac{1}{3^{69}}< \frac{1}{3^{64}}\)

27 tháng 7 2016

\(\left(\frac{1}{27}\right)^{23}=\frac{1^{23}}{27^{23}}=\frac{1}{\left(3^3\right)^{23}}=\frac{1}{3^{69}}\)

\(\left(\frac{1}{81}\right)^{16}=\frac{1^{16}}{81^{16}}=\frac{1}{\left(3^4\right)^{16}}=\frac{1}{3^{64}}\)

Vì 369 > 364

=> \(\frac{1}{3^{69}}< \frac{1}{3^{64}}\)

=> \(\left(\frac{1}{27}\right)^{23}< \left(\frac{1}{81}\right)^{16}\)

27 tháng 12 2016

a) \(\left|\frac{-15}{6}\right|-\left|\frac{3}{18}\right|.\sqrt{81}+\sqrt{\frac{9}{64}}\)

\(=\frac{15}{6}-\frac{1}{6}.9+\frac{3}{8}\)

\(=\frac{15}{6}-\frac{9}{6}+\frac{3}{8}\)

\(=1+\frac{3}{8}\)

\(=\frac{11}{8}\)

b) \(\frac{6^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2.3\right)^{15}.\left(3^2\right)^{10}}{3^{34}.2^{13}}=\frac{2^{15}.3^{15}.3^{20}}{3^{34}.2^{13}}=2^2.3=12\)

27 tháng 12 2016

a/ \(\left|\frac{-15}{6}\right|-\left|\frac{3}{18}\right|.\sqrt{81}+\sqrt{\frac{9}{64}}\)

= \(\frac{15}{6}-\frac{3}{18}.9+\frac{8}{8}\)

= \(\frac{15}{6}-\frac{3}{2}+\frac{3}{8}\)

= \(\frac{60-36+9}{24}=\frac{33}{24}=\frac{11}{8}\)

b/ \(\frac{6^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2.3\right)^{15}.\left(3^2\right)^{10}}{3^{34}.2^{13}}\) \(=\frac{2^{15}.3^{15}.3^{20}}{3^{34}.2^{13}}=\frac{2^2.3^{35}}{3^{34}}=\frac{4.3}{1}=12\)

26 tháng 6 2018

Bài 1 và Bài 2 dễ, bn có thể tự làm được!

Bài 3:

a) ta có: 1020 = (102)10 = 10010

=> 10010>910

=> 1020>910

b) ta có: (-5)30 = 530 =( 53)10 = 12510 ( vì là lũy thừa bậc chẵn)

(-3)50 = 350 = (35)10= 24310

=> 12510 < 24310

=> (-5)30 < (-3)50

c) ta có: 648 = (26)8= 248

1612 = ( 24)12 = 248

=> 648 = 1612

d) ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)

\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)

\(\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)

\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

26 tháng 6 2018

3.a) Ta có: 910=(32)10=320

Mà 1020<320

Nên 1020<910

c)Ta có:648 =(82)8=816

1612=(23)12=836

vì 816<836

Nên 648<162

              

18 tháng 7 2016

\(\left(\frac{-1}{64}\right)^5=\left(\left(\frac{-1}{4}\right)^3\right)^5=\left(\frac{-1}{4}\right)^{15}\)

\(\left(\frac{-1}{4}\right)^{15}< \left(\frac{-1}{4}\right)^7\Leftrightarrow\left(\frac{-1}{64}\right)^5< \left(\frac{-1}{4}\right)^7\)

17 tháng 7 2016

\(\left(\frac{-1}{64}\right)^5=-\frac{1}{64^5}=-\frac{1}{\left(4^3\right)^5}=-\frac{1}{4^{15}}\)

\(\left(-\frac{1}{4}\right)^7=-\frac{1}{4^7}\)

\(-\frac{1}{4^{15}}>-\frac{1}{4^7}\)

\(\Rightarrow\left(-\frac{1}{64}\right)^5>\left(-\frac{1}{4}\right)^7\)

23 tháng 8 2018

Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)

               \(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)

               \(=\frac{1.2....18.19}{2.3...19.20}\)

               \(=\frac{1}{20}>\frac{1}{21}\)

Vậy A > 1/21

a,\(\left(\frac{1}{9}-1\right).\left(\frac{1}{10}-1\right)...\left(\frac{1}{2004}-1\right).\left(\frac{1}{2005}-1\right)\)

\(=\frac{-8}{9}.\frac{-9}{10}...\frac{-2003}{2004}.\frac{-2004}{2005}\)

\(=\frac{\left(-8\right).\left(-9\right)...\left(-2003\right).\left(-2004\right)}{9.10...2004.2005}\)

\(=\frac{-\left(8.9...2003.2004\right)}{9.10...2004.2005}\)

\(=\frac{-8}{2005}\)

b,Ta có: \(81^{10}-27^{13}-9^{21}\)

\(=\left(3^4\right)^{10}-\left(3^3\right)^{13}-\left(3^2\right)^{21}\)

\(=3^{40}-3^{39}-3^{42}\)

\(=3^{39}.3-3^{39}-3^{39}.3^3\)

\(=3^{39}.\left(3-1-3^3\right)\)

\(=3^2.3^{37}.\left(-25\right)\)

\(=3^{37}.\left(-225\right)⋮225\)

Vậy \(81^{10}-27^{13}-9^{21}⋮225\)

27 tháng 1 2019

\(\left(\frac{2}{5}\right)^6.\left(\frac{25}{4}\right)^2\)

\(=\left[\left(\frac{2}{5}\right)^3\right]^2.\left(\frac{25}{4}\right)^2\)

\(=\left[\left(\frac{2}{5}\right)^3.\frac{25}{4}\right]^2\)

\(=\left[\frac{8}{125}.\frac{25}{4}\right]^2\)

\(=\left(\frac{2}{5}\right)^2\)

\(=\frac{4}{25}\)

27 tháng 1 2019

\(15\frac{1}{5}:\left(\frac{-5}{7}\right)-25\frac{1}{5}.\left(\frac{-7}{5}\right)\)

\(=15\frac{1}{5}.\frac{-7}{5}-25\frac{1}{5}.\frac{-7}{5}\)

\(=\frac{-7}{5}\left(15\frac{1}{5}-25\frac{1}{5}\right)\)

\(=\frac{-7}{5}.\left(-10\right)\)

\(=14\)